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ABSTRACT  

 

ENDPOINTS IN INTENSIVE CARE UNIT BASED RANDOMIZED CLINICAL TRIALS 

Michael Oscar Harhay 

Scott David Halpern 

 
 
With few exceptions, intensive care unit (ICU)-based randomized clinical trials (RCTs) have failed 
to demonstrate hypothesized treatment effects. Undoubtedly, some of these failures are 
attributable to interventions that truly do not provide hoped-for benefits. However, this dissertation 
pursues the thesis that many null findings represent “false negatives” that are due not to 
ineffective therapies but to flawed study designs or analytic approaches. We examine the design 
and statistical methods traditionally employed in ICU-based RCTs, and their potential impacts on 
the efficient measurement and interpretation of treatment effects. Paper one presents a 
systematic review of 146 contemporary ICU-based RCTs in which we find that most trials were 
underpowered to detect small but potentially important mortality differences between treatment 
arms. We also find that the majority of RCTs (73%) specified primary outcomes other than 
mortality, that trials employing nonmortal primary outcomes more frequently identified significant 
treatment effects, and that both mortal and nonmortal endpoints were heterogeneously defined, 
measured and analyzed across RCTs. Thus, papers two and three focus on nonmortal endpoints, 
using ICU length of stay (LOS) as a case study to evaluate how best to measure and analyze 
duration-based nonmortal endpoints. In paper two, we conduct a statistical simulation study, 
demonstrating that nonmortal endpoints are interlinked with and confounded by mortality, and 
that the manner in which investigators choose to account for deaths in LOS analyses may 
influence their conclusions. In paper three, we examine another potential source of error in LOS 
analyses, namely the measurement error attributable to the additional ICU time that patients 
commonly accrue after they are clinically ready for ICU discharge. Using simulated data informed 
by our own ICU-based RCT, we demonstrate that this “immutable time” (which cannot plausibly 
be altered by the interventions under study) combines with clinically necessary ICU time to 
produce overall LOS distributions that may either mask true treatment effects or suggest false 
treatment effects. Our work provides evidence of the potential benefits and pitfalls when 
employing nonmortal outcomes in ICU-based RCTs, and also identifies a clear need for 
standardized methods for defining and analyzing such outcomes.  
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CHAPTER 1. INTRODUCTION 

 

The growing burden and cost of critical illness 

 The demand for critical care, both in the United States (US) and worldwide, is outpacing 

the discovery of interventions that can substantively improve outcomes in intensive care unit 

(ICU) settings. In the US, one third of hospitalizations among patients older than 65 includes an 

ICU stay (Milbrandt et al., 2008) and 20% of the US population dies in an ICU (Angus et al., 

2004). The global demand for and provision of critical care will likely grow in future years, both 

because of aging populations where ICUs are prevalent as well as the expansion of critical care 

in lower-income settings (Cook & Rocker, 2014; Fleischmann et al., 2016; Murthy et al., 2015).    

The processes that lead to critical illness are diverse, which presents a challenge for 

researchers seeking to study and compare interventions in homogeneous ICU patient 

populations. Two paradigmatic examples of critical illness commonly encountered in ICU settings 

are sepsis/septic shock (Singer et al., 2016) and the acute respiratory distress syndrome (ARDS) 

(Force et al., 2012), both of which can result from acute or chronic illness and may present in a 

variety of patient types (e.g., various ages, comorbid conditions). ICUs also provide life-saving 

care for patients who are critically ill after surgery or trauma, as well as for a heterogeneous mix 

of patients with other pathologies (e.g., cardiovascular disease, cancer).  

Despite the diversity inherent in critical care settings, one unifying theme of critical illness 

is its high cost, both in financial and human terms. In the US, 1% of the gross domestic product is 

spent on the provision of critical care, exceeding $80 billion per year, and representing 

approximately 3% of all health care spending (N. A. Halpern et al., 2016; N. A. Halpern & 

Pastores, 2010). In addition to the financial burden, survivors of critical illness are often left with 

physical, cognitive and psychosocial deficits that impede long-term quality-of-life (QOL) (Adhikari 

et al., 2011; Bienvenu et al., 2012; Fan et al., 2014; Herridge et al., 2011; Iwashyna, 2010; Kress 
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& Hall, 2014; Mikkelsen et al., 2012; Spragg et al., 2010). There is also a growing awareness of 

the downstream impact of critical illness on patients’ caregivers, family members, and friends, 

who are called upon to cope with the loss of their loved ones after witnessing their suffering, or to 

provide daily care to survivors who require prolonged periods of time to regain their 

independence (Azoulay et al., 2005; Cameron et al., 2016; C. E. Cox et al., 2009). For instance, 

roughly one third of decision-makers for critically ill patients develop post-traumatic stress 

disorder or complicated grief that lasts months to years (Azoulay et al., 2005; Wendler & Rid, 

2011). Finally, there is the lasting impact on the critical care workforce (i.e., physicians and 

nurses) who must face death frequently and often report on the futility of the care they deliver, 

resulting in high rates of burnout (S. D. Halpern, 2011b; Hamric & Blackhall, 2007; Meltzer & 

Huckabay, 2004; Piers et al., 2011).  

Given the burden and costs of critical illness, innovations that improve outcomes among 

the critically ill have the potential to make vast impacts. Indeed, there is an impetus to advance all 

aspects of critical care, from the delivery of cost-effective care to the improvement of patient-

centered outcomes including quality-of-life. However, studies investigating promising therapies 

and clinical interventions in ICU settings have met with limited success, a topic that will be further 

illustrated in the second chapter of this dissertation.  

 

Randomization inference 

Randomized clinical trials (RCTs) are considered the “gold standard” for producing the 

experimental evidence required to assess the efficacy and safety of interventions. The pursuit of 

an RCT-generated evidence base pervades all medical disciplines, and more recently has 

extended into the social sciences. This is because randomization, or randomly allocating patients 

to a study arm, probabilistically balances study arms on all pretreatment or baseline factors 

(measured and unmeasured) and thereby is able to mitigate the likelihood of selection biases 
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when conducting hypothesis tests that compare study arms on post-randomization outcomes. As 

a result, random assignment of an intervention supports an estimate of the treatment effect that is 

independent of the error term. The result is an unbiased estimate of the impact of an intervention. 

The attractions and benefits of an RCT over observational data to assess a hypothesis 

have been written about widely and presented in various frameworks over the past several 

decades. The counterfactual framework is useful for describing why RCTs are so highly valued in 

developing theories of causal inference between exposures and outcomes (Hernán & Robins, 

2016; Morgan & Winship, 2015). Specifically, let A denote an exposure to an intervention in the 

ICU (A=1 indicates exposure to an intervention and A=0 indicates no exposure to an 

intervention). Then, for a binary outcome Y (e.g., death at day 30), we say that the intervention 

(A) has a causal effect on Y if Probability(Pr)[Ya=1=1] ≠ Pr[Ya=0=1] and the intervention has no 

causal effect on Y (the null hypothesis) if Pr[Ya=1=1] = Pr[Ya=0=1]. Indistinguishable notation would 

be applied to any ICU outcome of interest regardless of if it was a continuous (e.g., length of stay 

[LOS]), time-to-event (e.g., time-to-resolution of delirium) or count (e.g., days of infection per 

1,000 patient days) distribution.  

In observational research, there is a concern about known and unknown (or observed 

and unobserved) confounders. The theory behind randomization is that if it is executed correctly, 

the concern about confounding at baseline is removed. Without randomization prior to exposure, 

there is no guarantee that A, representing the intervention, is uncorrelated with the error term, ε 

(i.e., A may be endogenous). The result of endogenous correlation is a potentially biased, or 

incorrect estimate of the impact of an intervention.  

In contrast, the randomized experiment is built upon the concept of exchangeability, 

which by design is not susceptible to endogeneity. As a result, execution of an RCT is the closest 

a scientist can get to producing an unbiased causal effect estimate. Specifically, the risk of an 

event at baseline under the potential treatment value a among the treated is equal to the risk 

under the potential treatment value a for the untreated Pr[Ya=1|A=1] = Pr[Ya=1|A=0]. Said 
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differently, the conditional risk of an outcome is equal in all subsets defined by treatment status in 

the population. Therefore, the baseline risk is equal to the marginal risk under treatment value a 

in the whole population. In ideal settings the process of randomization or random allocation 

should result in counterfactual data that is missing completely at random (MCAR) for each 

subject, such that causal effects can be estimated statistically without bias.  

In practice, various logistical, patient and post-randomization factors can erode the 

assurance of unbiased effect estimates. Indeed, the focus of Chapters 4 and 5 of this dissertation 

are on post-randomization factors that can bias randomization inference. Specifically, in Chapter 

4 we assess the impact of informative censoring from mortality, and in Chapter 5 we assess 

measurement error resulting from within-hospital patient flow and how these post-randomization 

processes can bias treatment effect estimates and interpretation.  

 

Experimental evidence for treating critical illness 

Efforts at improving critical care outcomes have resulted in a long history of ICU-based 

RCTs that have been unable to demonstrate statistically significant improvements in patient 

outcomes through new interventions, protocols, therapies and staffing models in the ICU 

(Aberegg et al., 2010; Angus et al., 2010; Annane, 2009; Ospina-Tascon et al., 2008). Exceptions 

include studies that have shown the benefits of low (rather than high) tidal volumes for patients 

receiving mechanical ventilation (ARDSnet Investigators, 2000), of restrictive (rather than 

aggressive) blood transfusion practices (Hebert et al., 1999; Villanueva et al., 2013), and of light 

sedation that is frequently interrupted (rather than heavy sedation without protocol-driven 

interruptions) to maintain comfort among ventilated patients (Girard et al., 2008; Kress et al., 

2000). Unfortunately, the vast majority of critical care RCTs have not demonstrated interventions 

that decreased mortality (Aberegg et al., 2010; Landoni et al., 2015; Ospina-Tascon et al., 2008). 

A review of RCTs published exclusively in the journal Intensive Care Medicine from 2000-2010 
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found an overall success rate of 48.8% (of 221 RCTs) (Latronico et al., 2013). However, in two 

reviews of RCTs where mortality was the primary endpoint, success rates were only 14% (10 of 

72 RCTs published before August 2006) (Ospina-Tascon et al., 2008) and 18% (7 of 38 RCTs 

published from 1999-2009 in 5 major medical journals) (Aberegg et al., 2010), respectively. Given 

that these studies all focused on published RCTs, the true rate of positive RCTs is potentially 

lower as negative studies, especially industry-sponsored trials, may be less likely to be submitted 

for publication or ultimately be accepted for publication. The low rate of successful ICU-based 

RCTs has not gone unnoticed; there are some thought leaders who have been so disappointed 

by these trends that they have suggested entirely abandoning the concept of RCTs in the ICU 

(Dreyfuss, 2004; J.-L. Vincent, 2010). However, it is unclear whether the majority of ICU-based 

RCTs were negative because of a true lack of treatment effect or because of the design elements 

of the RCTs in which they were tested (J. L. Vincent, 2009). This is especially relevant in studies 

of nonmortal clinical endpoints (e.g., LOS in the ICU), where the statistical handling of dropout 

(censoring) from death could impact the interpretation of results. Therefore, this dissertation 

seeks to expand the empirical solutions available to researchers to help in distinguishing negative 

versus misinterpreted trials. To do so, we build on a small and limited empirical foundation. 

 While there is a range of proposed explanations (see conceptual framework in Table 1.1) 

for the low success rates of ICU-based RCTs, empirical research has focused almost exclusively 

on explanations related to statistical power in mortality studies. Specifically, researchers have 

identified a practice termed delta inflation, wherein unrealistically large predicted treatment effects 

are used to estimate a trial’s needed sample size (Aberegg et al., 2010; Latronico et al., 2013). 

Conversely, detection of smaller (but possibly more realistic) mortality differences between study 

arms requires larger study samples. As a result, studies that are powered based on delta inflation 

may be perceived as inconclusive or negative because potentially clinically relevant treatment 

effects are not statistically significant. The empirical assessment of delta inflation bias has been 

restricted to RCTs of mortality. It is unclear if this practice occurs with other nonmortal primary 

outcomes, and further, if nonmortal endpoints are as frequently negative as studies powered to 
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detect a treatment-associated decline in mortality. It is also unclear if misspecification of other 

elements of the power calculation, such as the event rate in the control arm of the study, leads to 

underestimated necessary sample sizes. These specific questions are examined in Chapter 2. 

 This thesis also pursues a specific focus on nonmortal outcomes which are largely under-

scrutinized but increasingly advocated trial endpoints by investigators and trial consortiums 

(Mebazaa et al., 2016; Opal et al., 2014; Spragg et al., 2010; Young et al., 2012). Principal to this 

endeavor is the identification and subsequent standardization of core outcomes that will be 

measured and analyzed identically across future trials to promote less biased comparisons 

between different trials and promote harmonized data assemblage in meta-analyses (Blackwood 

et al., 2014; Blackwood et al., 2015). This area of research activity is very nascent in critical care, 

but has seen much activity in other disciplines through the COMET (Core Outcome Measures in 

Effectiveness Trials) Initiative which focuses on the development and application of a 

standardized set of outcomes (Prinsen et al., 2014; Williamson & Clarke, 2012). Among the 

several goals of this work, the research herein seeks to enhance research in critical care by 

considering standardized analytic methods to improve the detection of clinically relevant 

treatment effects and facilitate comparisons across ICU populations worldwide.  

 

Dissertation aims 

As reviewed above, RCTs among critically ill patients commonly fail to detect their 

hypothesized treatment effects, but it is unknown whether these trials have correctly identified the 

lack of treatment effect (i.e., true negative) or have committed a type-II error (i.e., false negative) 

due to methodologic flaws. Therefore, this dissertation seeks to evaluate the hypotheses outlined 

in Table 1.1. The overall objective is twofold: (1) to provide and advance knowledge that will 

improve current approaches to designing RCTs in critical care and (2) advance novel 

perspectives and concepts to improve the assessment of experimental evidence from ICU-based 
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RCTs. These two goals are collectively accomplished through a series of three thematically linked 

analyses that elucidate some of the potential mechanisms underlying the ongoing challenges that 

past trials have encountered in identifying treatment effects.  

First, in Chapter 2, we conduct the largest-ever study of the outcomes, design, and 

analysis of ICU-based RCTs published in 16 leading journals from 2007-2013. In Chapter 3, we 

present the empirical framework for Chapters 4 and 5, which is based on the finding that the 

majority of RCTs studies in Chapter 2 were designed to assess a nonmortal primary endpoint. 

Therefore, Chapters 4 and 5 focus on issues salient to RCTs with nonmortal endpoints, and use 

ICU LOS as a case study. Indeed, LOS is the most frequently used nonmortal outcome across all 

published trials (Chapter 2), and both a patient-centered and critical operational outcome. It is 

also representative of a broader class of endpoints assessing “durations,” such as the duration of 

organ dysfunction, delirium, or ventilation. Accordingly, LOS is an illustrative endpoint to appraise 

the empirical and conceptual issues related to the definition, measurement and statistical 

comparisons of nonmortal measures between study arms.  

First, in Chapter 4, a detailed examination of the epidemiological and statistical issues of 

measuring and analyzing ICU LOS in the presence of informative censoring due to mortality is 

undertaken. Then, in Chapter 5 we identify and evaluate the importance of a new form of 

measurement error termed ‘immutable time bias.’ This bias is defined as immutable because the 

extra time contributed to the total LOS could not be altered by the intervention, but rather is driven 

by system issues including floor bed availability, capacity strain, or administrative delays. With a 

simulation study informed by both the Study to Understand Nighttime Staffing Effectiveness in a 

Tertiary Care ICU (SUNSET-ICU) RCT, performed at our institution, and the few other RCTs we 

identified that reported the “ready-to-discharge time” over “actual discharge time,” we assess the 

identification of treatment effects in LOS under different hypothetical scenarios. We summarize 

the results of these three empirical investigations and their relevance for future ICU-based RCTs 

in Chapter 6. 
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Table 1.1. Hypotheses to explain low efficacy in critical care randomized clinical trials  

 

Domain 

Dissertation 

chapter 

assessing an 

element of this 

hypothesis 

Hypothesis 

Intervention 2 
The proposed interventions are not truly effective 

interventions. 

Logistical 2,5 

RCTs are sufficiently powered but patient attrition 

leads to appreciable post-randomization losses so 

that the intention-to-treat analyses are highly 

conservative or biased. 

Study 

population 
2,4,5 

Treatment-effect heterogeneity may lead to a diluted 

effect estimate because while interventions work for 

certain patients, others are too sick and/or have too 

many competing risks for death for singular 

interventions to be of benefit. 

Power 2,4,5 

RCTs may suffer design issues, such as insufficient 

power to detect relatively small but important effects 

in appropriate outcomes (i.e., excessive Type II error 

rates). 

Outcome 2,4,5 

Outcome measures are inappropriate, that is, the 

intervention does not impact the outcome that is 

measured or the selected outcome is not the ideal 

way of measuring an effect. 

Analysis 2,4,5 

Outcome measures themselves are appropriate, 

however, the mathematical methods of evaluating 

them are flawed or limited. 
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CHAPTER 2. OUTCOMES AND STATISTICAL POWER IN ADULT CRITICAL CARE 

RANDOMIZED TRIALS 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in the American Journal of Respiratory and Critical Care 
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of the American Thoracic Society. Copyright © 2014 American Thoracic Society. The citation for 

this publication is: 

Harhay MO, Wagner J, Ratcliffe SJ, Bronheim RS, Gopal A, Green S, Cooney E, 
Mikkelsen ME, Prasad Kerlin M, Small DS, Halpern SD. 2014. Outcomes and Statistical 
Power in Adult Critical Care Randomized Trials. American Journal of Respiratory and 
Critical Care Medicine Jun 15;189(12):1469-78. 
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Introduction 

In this chapter we examine the design, analysis and outcomes used in published ICU-

based RCTs. As noted in the introduction, the primary motivation for this analysis is that most 

published RCTs of critical care interventions that aim to reduce mortality have produced negative 

results (Aberegg et al., 2010; Angus et al., 2010; Annane, 2009; Ospina-Tascon et al., 2008), and 

even these reports may be overly optimistic because negative trials are less likely to be published 

and identified. While several RCTs have revolutionized critical care practice (ARDSnet 

Investigators, 2000; Girard et al., 2008; Guerin et al., 2013), the results of critical care trials on the 

whole have been so disappointing that some leaders in the field have suggested a renewed focus 

on non-experimental study designs (Dreyfuss, 2004; J.-L. Vincent, 2010).  

However, truly negative trials are valuable because they prevent the use of interventions 

that are either costly but non-beneficial or even harmful (e.g., intensive insulin therapy (Van den 

Berghe et al., 2006) and hydroxyethyl starch (Myburgh et al., 2012; Perner et al., 2012)). Further, 

there are many reasons why trials may not demonstrate a treatment effect, including ineffective 

interventions, difficulty recruiting adequate sample sizes, post-randomization patient attrition, 

heterogeneous patient populations or treatment-effect heterogeneity, use of inappropriate 

outcomes, unreasonable assumptions (e.g, predicted effect sizes) used in power calculations 

and/or smaller than appreciated attributable morbidity and mortality fractions (Aberegg et al., 

2010; Angus et al., 2010; Annane, 2009; Marini, 2006; McAuley et al., 2010; Ospina-Tascon et 

al., 2008; Reade & Angus, 2009; Rubenfeld & Abraham, 2008; van Meurs et al., 2008). 

Understanding an evidence base requires the ability to distinguish among these reasons so as to 

differentiate trials that are truly negative from those that may be falsely negative. 

As a first step in enhancing understanding of clinical trials in adult critical care, we 

created a contemporary database of the design, analysis, and reporting of ICU-based RCTs. 

Herein, we describe the development of this database, the characteristics of RCTs published in 

the past 6 years with a specific focus on the outcome measures used, the quality of these RCTs 
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using selected quality metrics, and the extents to which several issues germane to statistical 

power may contribute to trials’ outcomes.  

 

Methods 

A group of physicians, epidemiologists and statisticians, guided by the 2007 CONSORT 

(Hopewell et al., 2008) (Consolidated Standards of Reporting Trials) statement, Jadad scale 

(Jadad et al., 1996; Juni et al., 2001), and prior work and commentaries on the topic (Aberegg et 

al., 2010; Angus et al., 2010; Annane, 2009; Chiche & Angus, 2008; Marini, 2006; McAuley et al., 

2010; Ospina-Tascon et al., 2008; Reade & Angus, 2009; Rubenfeld & Abraham, 2008; van 

Meurs et al., 2008; J.-L. Vincent, 2010) identified RCT elements to be abstracted. We began our 

search for published RCTs in January 2007, as this approximated the end of prior review periods 

(Aberegg et al., 2010; Ospina-Tascon et al., 2008) through May 2013. We examined only RCTs 

of diagnostic, therapeutic, or process and systems interventions among adult patients conducted 

in an ICU published in 16 prominent general or critical care journals (Table 2.1). 

Table 2.1. Eligible journals and published critical care randomized clinical trials abstracted 

Peer-reviewed journal Number of RCTs 

Critical Care Medicine 44 

Intensive Care Medicine 20 

JAMA 17 

New England Journal of Medicine 17 

American Journal of Respiratory and Critical Care 

Medicine 

14 

The Lancet 10 

Chest 7 

Anesthesia and Analgesia 4 

Anesthesiology 2 

Annals of Internal Medicine 2 

Archives of (now JAMA-) Internal Medicine 2 

British Journal of Anesthesia 2 

Canadian Medical Association Journal 2 

British Medical Journal 1 

Journal of Critical Care 1 

Journal of Trauma and Acute Care Surgery 1 
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The MeSH terms “Intensive Care Unit”, “Critical Care”, “Critically Ill”, “Intensive Care”, 

“ICU”, “Randomized clinical trial”, and “Randomized controlled trial” were combined with the 

unique search names for the targeted journals. Search filters were used to limit our search to 

studies of adults that were published in the English language. The search results were screened 

for duplicates using RefWorks (ProQuest; Ann Arbor, MI) to create a single list of unique articles 

for eligibility screening.  

For an RCT to be considered eligible it had to: (i) be published in one of the sixteen pre-

specified journals no earlier than 2007, (ii) take place in one or more ICUs (i.e. not in an 

emergency department, post-anesthesia recovery unit, or elsewhere), (iii) include adult patients, 

and (iv) specify a primary clinical outcome (Table 2.2).  

 

Table 2.2. A priori selected outcomes 
 

1. ICU mortality  

2. In-hospital mortality  

3. 28-day mortality  

4. 29-180 day mortality  

5. 181+ day mortality  

6. ICU readmission  

7. Hospital discharge disposition  

8. Costs/ Charges  

9. ICU length of stay  

10. Hospital length of stay  

11. Ventilator-free days  

12. Duration of mechanical ventilation  

13. Organ failure-free days 

14. Patient, family, physician, nurse, or 
other provider satisfaction 

15. Complications/ adverse outcomes  

16. Healthcare associated infections  

17. Quality of life  

18. Survival  

19. Incidence of acute organ failure  

20. Delirium  

21. Composite or other outcome (not 
previously specified)
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We excluded intermediate and physiologic outcomes because our goal was to identify 

trials testing interventions that were sufficiently mature as to be applied clinically as opposed to 

those that were primarily hypothesis generating. Physiological and psychological test scores were 

not considered to be clinical outcomes and hence were not abstracted. Intermediate and 

physiologic outcomes were excluded because our goal was to identify trials testing interventions 

that were sufficiently mature as to be applied clinically as opposed to those that were primarily 

hypothesis generating.  

 

Data abstraction 

Using the Research Electronic Data Capture (REDCap) platform hosted at the University 

of Pennsylvania (Harris et al., 2009), two investigators independently abstracted the primary and 

secondary outcomes, as reported by the authors in each trial, and the result (positive or negative) 

for each RCT. We relied on the data as reported by the original authors in their publication for 

each study during abstraction. Three investigators (RB, AG, SG) served as primary data 

abstractors, with two of them initially screening each article identified by the electronic search for 

initial eligibility. To validate this screening process and as an internal quality measure, four other 

investigators (MOH, JW, EC, and SDH) screened four of the sixteen selected journals over the 

full duration of the inclusion period (n=951 journal issues). This screening identified 24 RCTs, of 

which 18 were eligible per inclusion criteria. The 3 primary data abstractors achieved perfect 

agreement, identifying all 24 of these RCTs and correctly excluding the 6 ineligible trials.   

A superiority study was considered positive if the p-value for the analysis of the primary 

outcome was less than 0.05, or the adjusted significance level after interim analyses, based on 

the reporting in each RCT. An equivalence or non-inferiority study was considered positive if the 

difference between study arms fell between the pre-determined margins (confidence intervals) 

and met the equivalence or non-inferiority hypothesis at the p-value declared by the study’s 

authors. When a study had more than two arms, outcomes were recorded from the control arm 

and the arm employing an intervention of maximal dose or degree. Data were also extracted on 
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study funding, type of intervention tested, target patient population, enrollment and retention, and 

statistical power. 

To assess statistical power, we abstracted three specific methodological elements: (1) 

discussion of the power calculation used for the trial, (2) rationales for the parameters used in the 

sample size or power estimation, and (3) participant accrual. Discussion of the power calculation 

was defined as reporting the inputs used to calculate power or sample size, such as the baseline 

(control group) event rate and the expected treatment effect size for binary endpoints. The 

rationales for sample size or power estimation inputs could include prior research results, pilot 

studies, or other objective data. Participant accrual was tracked by assessing CONSORT 

diagrams, when available, indicating the number of patients screened, randomized and ultimately 

analyzed (Hopewell et al., 2008). 

The data abstractors achieved greater than 90% agreement for individual data elements, 

including primary and secondary outcomes, funding, target sample size, and reason(s) for study 

exclusion. The first author adjudicated the discrepancies that arose. STATA 13 (StataCorp, 

College Station, Texas) was used for database management and analysis.  

 

Analyses to assess statistical power 

For each RCT with a binary outcome, we abstracted the predicted and observed risk 

difference on the absolute scale. We used the absolute, rather than relative, risk difference 

because absolute differences are used to determine the clinical significance of effects (Sackett et 

al., 1997). For example, to calculate the number needed to treat, the absolute risk reduction is 

required. For negative trials, we evaluated whether (non-significant) reductions in the primary 

outcome of 3% or greater were identified. Our choice of a 3% cutoff is somewhat arbitrary, but 

was chosen a priori based on the view that any treatment-associated absolute effect of this size 

would clearly be important to patients, and that effects less than 3%, albeit potentially important, 

could also more easily be attributable to noise or random error. These assessments were limited 
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to trials that reported power calculations, so as to enable uniform determinations of whether or 

not these RCTs were powered to document these effect sizes as significant.  

We also explored the related phenomenon of “delta inflation bias” (Aberegg et al., 2010; 

Latronico et al., 2013), whereby unrealistically large treatment effects are predicted in power 

calculations, resulting in target sample sizes that may fail to detect clinically important differences. 

To estimate the necessary sample size for a trial there are two essential components, the rate of 

the outcome in the control arm and the expected difference, termed the minimally clinically 

important difference (MCID). The MCID is also known as the predicted treatment effect, effect 

size or delta ( ). The MCID characterizes the smallest change in the primary outcome that is felt 

to be meaningful to both the clinician and patient. The MCID is the most variable and important 

component of sample size calculations, even when the outcome upon which the trial is powered 

is the same across studies. To properly design a RCT that can adequately answer the primary 

study question, it is necessary to establish the magnitude of the difference in the primary end 

point that will signify a clinically relevant treatment effect. Detection of a smaller difference 

between study groups requires larger sample sizes. Detection of a larger difference between 

study groups requires smaller sample sizes. This mathematical tension is the speculated 

motivation for researchers to select a larger threshold that consequently decreases the sample 

size requirements. This is delta inflation (Aberegg et al., 2010). The corollary of this practice is the 

increased likelihood of type II error (not detecting a true effect). 

To understand how delta inflation works we can see below that if we seek to determine 

the targeted sample size (n) using significance level 𝛼, (typically 0.05) and want to have power 

1 − 𝛽
 
(typically 0.80) when we an assumed value for 𝑃1 (baseline mortality) & unknown value for 

 (mortality in the treated arm), a speculated mortality decline must be presumed. This decline 

creates that delta, that is, ∆ =  𝑃1 − 𝑃2. These components permit the calculation of a targeted 

sample size based on that delta using the following equation that can be calculated in most 

D

2p
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statistical packages:  If a researcher knows that a 

certain sample size range will be available the delta can be manipulated to attain an acceptable 

power (e.g, 0.80). This can be seen in an alternative configuration of the above equation that can 

be used to solve for a certain power. For instance, if we must use specific sample sizes  & , 

the assumed values for 𝑃1 & 𝑃2, and hence ∆ =  𝑃1 − 𝑃2 , can be changed and then the power we 

achieve is given by: 

 

where

. 

Using the actual enrolled sample sizes in the control and treatment arms, and the 

observed baseline mortality rate, we calculated the power of each study to observe a clinically 

significant, treatment-associated mortality reduction from of 3% to 15%. The number of trials with 

80% power was tallied for each treatment-associated mortality reduction of 3% to 15%. We then 

re-did each calculation using the predicted baseline mortality from the published RCT. 

Comparison of power obtained using the observed and predicted rates therefore highlights how 

often mis-predictions of baseline event rates influence power. Similar analyses were undertaken 

using all RCTs with binary nonmortal primary outcomes.  

 

Statistical analyses 

 We conducted unadjusted comparisons of proportions using x2 tests to examine the 

differences in proportions of successful trials across trial characteristics. We used multivariable 

regression to identify study-level characteristics associated with a trial’s being positive. For this 

purpose, given limited degrees of freedom, we limited our assessments to the following trial 

characteristics: (1) mortal vs. nonmortal primary outcome, (2) funding source (3) single vs. 2-10 

centers vs. > 10 centers and (4) type of intervention. Odds ratios (ORs) from a logistic regression 
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and prevalence rate ratios (PRR) from a Poisson regression with a robust variance estimator are 

presented since the ORs will overestimate relative risks with event (positive trial) rates >10% 

(Deddens & Petersen, 2008).  

 

Results 

Our search identified 376 potential studies published between January 2007 and May 

2013 (Figure 2.1). Of these, 146 met the pre-specified inclusion criteria. The most commonly 

tested types of interventions were protocols (49%) and drug therapies (40%) (Table 2.3). Most 

trials (92%) compared two intervention arms (max=5). Overall, 54 (37%) were positive, that is, 

these RCTs demonstrated a significant difference between study groups in the primary outcome 

as hypothesized (Table 2.3). In addition to the 21(14%) RCTs stopped early for safety or futility 

an additional 4 RCTs (3%) revealed statistically significant findings of inferiority (i.e., 

effects contrary to the primary hypothesis).  

The most common primary outcomes were measures of mortality over a specified time 

period (27%), followed by outcomes related to healthcare associated infections (23%), ventilation 

(21%) (e.g., time to extubation, ventilator-free days or required mechanical ventilation), and 

quality (10%) (e.g., complications or adverse events). The incidence of positive trials varied 

depending on the primary outcome. The success rates for trials using these four above-

mentioned outcomes were 10%, 58%, 43% and 50%, respectively. Two of the four positive 

mortality trials were only significant after pre-specified adjustment (Jansen et al., 2010; Papazian 

et al., 2010); thus, only 5% of these trials showed statistically significant differences in crude 

mortality rates. Twenty-four of the 40 trials where mortality was the primary outcome studied 28- 

or 30-day mortality. Five additional RCTs included a mortality endpoint as part of a composite 

primary outcome with nonmortal measures and one RCT was powered on mortality despite being 

listed as a secondary outcome; of these, one trial was positive.  



www.manaraa.com

18 

 

Figure 2.1. Analytic sample of published randomized clinical trials of critical care interventions 

 

 

 

 

 

 

 

 

 

 

 

Potential adult critical care RCTs identified in 16 target journals potentially eligible for inclusion: 
n=376 

Critical care RCTs identified in adults abstracted: n=146 

Critical care RCTs that studied a binary primary outcome: n=101 

 40 had a primary outcome of mortality over a specified time period  

o n=34 superiority RCTs included information on their power estimate 

(denominator for Figures 2.4 and 2.6) 

o Reasons for exclusion (n=6) 

 n=2, 2x2 factorial designs 

 n=2, insufficient reporting 

 n=2, cluster randomized trial 

 61 tested other nonmortal binary primary outcomes  

o n=47 superiority RCTs included information on their power estimate 

(denominator for Figure 2.5) 

o Reasons for exclusion (n=14) 

 n=6, insufficient or unclear reporting of results or analyses 

 n=4, non-inferiority or equivalence designs 

 n=2, three or more study arms 

 n=1, 2x2 factorial design 

 n=1, reported post-hoc power calculation 

 

 

 

Reasons for exclusion: 
  Not a RCT = 28 
  Does not take place in an ICU or in an ICU patient population = 58 
  Outcomes are not clinical according to eligibility criteria = 116 
  Sub-analyses or post-hoc analyses of RCT data = 28 
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Table 2.3. Characteristics of adult randomized clinical trials in critical care 

Characteristic N (%)  
N (%) with a positive 

primary outcome  

Total 146 (100%) 54 (37%) 
Funding   

No industry 80 (55%) 26 (33%) 
Some industry 42 (29%) 13 (31%) 
No funding / not reported 24 (16%) 15 (63%) 

Single center 54 (37%) 25 (46%) 
Multicenter 92 (63%) 29 (32%) 
     10 or fewer ICUs 40 (27%) 18 (45%) 
     11-25 ICUs 25 (17%) 6 (24%) 

  >25 ICUs 27 (18%) 5 (19%) 
Type of intervention studied   
     Protocol 71 (49%) 30 (42%) 
     Drug 59 (40%) 18 (31%) 
     Device/ monitoring 5 (3%) 1 (20%) 
     Other 11 (8%) 5 (45%) 
Primary target patient populations   

General ICU 52 (36%) 30 (58%) 
Sepsis spectrum 22 (15%) 0 
Cardiac critical care 17 (12%) 7 (41%) 
Acute lung injury/ ARDS  16 (11%) 2 (13%) 

Unit of randomization   
     Patient, surrogate, or family  137 (94%) 49 (36%) 
     ICU (cluster randomization) 9 (6%) 5 (56%) 

Primary outcome (1 per trial, n=146 CCRCTs) 

Mortality (e.g., Hospital, ICU, 28-day)*  40 (27%) 4 (10%) 
Infection related 33 (23%) 19 (58%) 
Ventilation related 30 (21%) 13 (43%) 
Quality (complications/adverse outcomes) 14 (10%) 7 (50%) 
Organ failure 8 (5%) 1 (13%) 
Composite outcome 7 (5%) 2 (29%) 
Delirium 5 (3%) 2 (40%) 
Hospital Discharge disposition (functional status) 3 (2%) 1 (33%) 
Length of Stay 3 (2%) 2 (67%) 
Smoking cessation 2 (1%) 2 (100%) 
Quality of sleep 1 (1%) 1 (100%) 

Most frequent secondary outcomes (multiple possible per RCT) 

Mortality   
  ICU Mortality 47 (32%) 4 (9%) 
  In-hospital mortality 44 (30%) 2 (5%) 
  28 day  29 (20%) 4 (14%) 
  29-180 days 35 (24%) 5 (14%) 

Ventilation   

  Duration of MV 55 (38%) 12 (22%) 
  Ventilator free days 22 (15%) 6 (27%) 

Length of Stay   

  ICU length of stay 93 (64%) 12 (13%) 
  Hospital length of stay 71 (49%) 5 (7%) 

Quality (Complications/adverse outcomes) 60 (41%) 14 (23%) 
Infection related 36 (25%) 8 (22%) 
Organ failure 17 (12%) 2 (12%) 
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 The most common secondary outcomes across all RCTs were ICU (64%) and hospital 

(49%) length of stay (Table 2.3).  

Of the 122 (84%) trials that disclosed the funding source, 34% reported receipt of 

industry funding, and 66% reported no industry funding. There was no relationship between 

industry funding and the probability that a trial would be positive (33% vs. 31%, p = 0.9). The 

remaining 24 trials did not disclose any sources of funding, and these were more likely to be 

positive (63%, p = 0.005 for comparison with all studies reporting funding sources). Single center 

RCTs (n=54) were less common than multi-center RCTs (n=92). However, multi-center RCTs 

were less likely to be positive and the rate decreased as the number of participating ICUs 

increased (p=0.03) in univariate analyses. In the multivariable regressions, RCTs that did not 

report any funding source (OR=3.3, 95% CI: 1.2-9.4) and RCTs that did not study a primary 

mortality outcome (OR=6.8, 95% CI: 2.1-22.7) were significantly more likely to be successful 

(Figure 2.2). 

Figure 2.2. Adjusted associations of selected RCT characteristics with positive primary outcomes 

 

Notes: RCTs that included measures of morbidity or other clinical measures in the primary 
outcome were not categorized as mortality trials. 
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Power or sample size were discussed in 135 RCTs (92%), however, only 68% of these 

studies cited prior research, a pilot study, or examination of other data (e.g., from the authors’ 

center) to justify the inputs used in calculating the required sample size (Table 2.4). A CONSORT 

diagram portraying participant flow was reported in 119 RCTs (82%). 

 

Table 2.4. Power and sample size characteristics of randomized clinical trials in critical care 

 

Characteristic Number of RCTs 
n (%) 

positive 

Total  146   

Included a consort diagram (patient flow) 119 (82%) 
 

Rationale for power parameters (e.g., baseline rate, 

predicted delta, expected time to event) 
92 (63%) 

 
Type of outcome  

  
Binary outcome 101 (69%) 31 (31%) 

Duration: (e.g., event free-days) or time-to-event 

outcome 

35 (24%) 16 (46%) 

Rate (e.g., per 1,000 patient days) 7 (5%) 6 (86%) 

Continuous 3 (2%) 1 (33%) 

   
RCT stopped early 32 (22%) 

 
Futility 12 (8%) 

 
Safety 9 (6%) 

 
Recruitment / logistical issues 11 (8%) 

 
   
Power or sample size plan discussed, including cluster 

trials 

      135 (92%) 
 

RCT reported a targeted a priori sample size 130/135 (96%) 
 

Recruited < 95% of target or stopped early due to    

recruitment / logistical issues 

20/130 (15%) 4/20 (20%) 

Recruited 95-110% of target sample size or stopped 

early for futility 
88/130 (68%) 36/88 (41%) 

Recruited > 110% of target sample size 13/130 (10%) 4/13 (31%) 

Stopped early for safety reasons 9/130 (7%) 
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A total of 101 (69%) RCTs used a binary primary outcome. Of these, 40 examined a 

mortality outcome and 61 used other nonmortal outcomes (e.g., incidence of VAP). Twenty-three 

of the 40 RCTs with mortality as a primary outcome explained the rationale for their predicted 

treatment-associated mortality reduction. Thirty-four of these 40 RCTs reported the values for 

their power calculation and specified that they were superiority trials (i.e., powered for a specific 

treatment-associated mortality reduction). Of these 34 mortality endpoint superiority trials, three 

were positive (two only after pre-specified adjustment), and 11 (33%) had non-significant absolute 

treatment effects in the hypothesized direction that were larger than 3% (Figure 2.3). 

Of the 61 RCTs with a primary nonmortal binary outcome, 47 were two-arm superiority 

trials and reported the predicted treatment-associated reduction they used for their power 

calculation (Figure 2.1). Of these 47 RCTs, 20 were positive and 27 were statistically non- 

Figure 2.3. Expected versus actual treatment effect on mortality in 34 superiority trials where the 
primary outcome was mortality 
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Figure 2.4. Expected versus actual treatment effect in 47 superiority trials with a binary non-
mortal primary outcome 

 

significant, of which 12 (44.4%) observed absolute treatment effects in the hypothesized direction 

that were larger than 3% (Figure 2.4). 

Among the 33 superiority trials without adaptive control arms reporting expected control 

group mortality rates, the actual control group mortality differed from the expected value by 7.5% 

or more in 22 RCTs (Figure 2.5). Despite these frequent differences between expected and 

observed control group mortality rates, this rarely accounted for a study's inability to detect a 

given effect size as significant. For example, 12 (out of 30) negative mortality trials that tested for 

superiority could have detected a 10% mortality reduction with the observed control group 

mortality rate, compared with 13 such trials if the expected control group mortality had been 

observed (Figure 2.6). Among the 46 (of 47) nonmortal superiority trials with a binary endpoint in 

which expected control group rates were reported in the manuscripts, the actual control group 

rate differed from the expected value by 7.5% or more in 21 RCTs. Similar to the aforementioned  
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Figure 2.5. Expected and observed rate of mortality in control arms in RCTs that tested the effect 
of an intervention on mortality  

  

Figure 2.6. Simulation results of superiority trials where the primary outcome was mortality 
assuming 80% power to find a treatment-associated mortality reduction of 3 to 15% 
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results for mortality trials, misspecification of control group rates rarely accounted for a study's 

inability to detect a given effect size as significant. 

 

Discussion 

This contemporary study of 146 RCTs published in the leading medical and critical care 

journals yields several important findings. First, investigators choose a variety of primary 

outcomes for trials of ICU-based interventions. Some of this heterogeneity is appropriate given 

different anticipated effects of various interventions. However, the variation of endpoints selected 

even among trials using some form of a mortality primary endpoint suggests little agreement on 

the optimal outcomes in critical care. These data complement a prior study showing variability in 

ventilation-associated outcomes in critical care RCTs (Blackwood et al., 2014).  This lack of 

standardized definitions and methods for assessing common outcomes poses challenges for 

comparing and understanding differences between RCTs, replicating results, and conducting 

meta-analyses. 

Second, a majority of RCTs are “negative” in the sense that they do not demonstrate a 

benefit from the tested intervention. This is particularly true when mortality is the primary outcome 

(10% positive rate, or 5% if only crude rates are considered), with higher proportions of positive 

trials when other outcomes are used (13-100% positive rate) (Table 2.3).  Of note, a 5-10% 

positive rate is roughly the rate that would be expected assuming a conventional type I error rate 

of 0.05. A prior review of RCTs in both adults and children published in the journal Intensive Care 

Medicine from 2000-2010 found an overall success rate of 48.8% (of 221 RCTs) (Latronico et al., 

2013), somewhat higher than our observed rate of 37% (of 146 RCTs). Additionally, two reviews 

that focused on RCTs using mortality endpoints found success rates of 14% (10 of 72 RCTs 

published before August 2006) (Ospina-Tascon et al., 2008) and 18% (7 of 38 RCTs published 

from 1999-2009 in 5 major medical journals) (Aberegg et al., 2010), somewhat higher than our 
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rate of 10%. Although it is possible that more trials are becoming negative over time, these 

differences may also be attributable to variability in the journals sampled and the eligibility criteria 

used to include RCTs. Because our study and all prior studies focused on published RCTs, the 

true rates of successful trials are likely even lower. 

The high rate of negative trials does not, itself, suggest a problem; a majority of trials may 

“appropriately” fail to detect significant reductions in mortality. Such “true negatives” could arise if 

more interventions being tested are truly ineffective, as may occur when a discipline matures. 

Alternatively, such findings may be attributable to the fact that mortality in the ICU is heavily 

determined by physicians’ decisions to withhold or withdraw life support (Garland & Connors, 

2007), crowding out any plausible effect of an intervention. Finally, 10% or 20% of trials should be 

negative by chance alone even when power is set to 90% or 80%, respectively.  

Nonetheless, the present study suggests that in many cases, critical care RCTs, and 

especially those studying mortal endpoints, have not been designed to identify realistic treatment 

effects. For example, we find that in a majority of negative RCTs, the results move in the 

predicted direction, often considerably so, yet fail to attain the predicted treatment effect upon 

which the study was powered (Figures 2.3 and 2.4). This provides contemporary evidence in 

support of the notion that investigators commonly select implausibly large treatment effects upon 

which to base sample size requirements (Aberegg et al., 2010). Although the problem of 

underpowered trials is certainly not unique to critical care, it does raise ethical concerns because 

such trials expose research participants to the risks and burdens of research without being 

(sufficiently) able to deliver on the purported benefits of expanding knowledge and improving 

future care (S. D. Halpern et al., 2002; Luce et al., 2004).  

A third and related finding is that investigators commonly err in predicting the baseline 

event rate in their trials. With high-predicted background rates, large absolute risk reductions 

might seem plausible to investigators because they would reflect more modest relative risk 

reductions (Sackett et al., 1997). However, we find that control group mortality rates are often 
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considerably lower than predicted, which could make such large effects improbable. For instance, 

it may be unreasonable to assume that an intervention predicted to bring mortality down to 30%, 

assuming a base rate of 40%, would also reduce mortality to 10% if the base rate turned out to be 

20%. Thus, as the baseline mortality rate declines, there will invariably be diminishing marginal 

returns for any intervention – i.e., a lower proportion of potentially save-able patients.  

Despite the possibility that over-predictions of control group event rates would contribute 

to critical care RCTs being negative, this appears to be only a minor piece of the problem. We 

found that even when large errors were made in predicted baseline mortality, this rarely changed 

whether a trial would or would not have detected a given difference as significant. This may be 

attributable to a counterbalancing phenomenon whereby as the baseline rate moves away from 

50%, the sample size required to detect any given difference on an absolute scale decreases. 

Studies of secular declines in mortality rates for common pathologies, such as done with 

multicenter RCTs in sepsis (Stevenson et al., 2014) and acute lung injury (Spragg et al., 2010), 

could better inform control group mortality rates, and also guide selection of more reasonable 

treatment effects when designing future RCTs. Further, event-driven adaptive trial designs, such 

as utilized in the PROWESS-SHOCK trial (Ranieri et al., 2012), that adjust (by increasing sample 

size) to lower than expected mortality in the control group offer an attractive solution to this issue.  

Additional strategies for improving trial success might include use of pre-specified 

covariate adjustment (Hernandez et al., 2004; Roozenbeek et al., 2010; Roozenbeek et al., 2009) 

[e.g., see Jansen and colleagues (Jansen et al., 2010)], larger target sample sizes, and more 

realistic and conservative treatment effect expectations (Scales & Rubenfeld, 2005) (Table 2.5). 

Additionally, innovative trial designs, such as Bayesian adaptive trials, may be particularly 

valuable for assessing drug therapies (Angus & van der Poll, 2013; Spragg et al., 2010).  

Regarding endpoints, some have questioned the conceptual propriety of using mortality as an 

endpoint for research or quality assessment on seriously or critically ill patients (Holloway & Quill, 

2007). Although many experts believe that mortality is the ultimate patient-centered outcome for 
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critically ill patients, others have called for greater use of nonmortal clinical endpoints (Ferguson 

et al., 2013; Spragg et al., 2010). Unfortunately, nonmortal endpoints face several threats to 

validity including, but not limited to, ascertainment bias (measurement error) and the limits of 

commonly used statistical methods for addressing the competing risks and informative dropout 

attributable to high ICU mortality rates. Indeed, our observation that RCTs of nonmortal endpoints 

were more likely to be positive may be an artifact of these measurement and analysis problems. 

Ongoing methodological work designed to offer new critical care outcome measures that 

incorporate mortality into the assessment of ICU length of stay or post-ICU quality of life may 

ultimately offer optimal approaches for quantifying the effects of interventions in the ICU. 

This study has limitations. First, we only calculated power and detectable differences for 

trials using binary endpoints. We considered methods to assess effect sizes of trials employing 

continuous or time-to-event outcome such as ventilator-free days or time to extubation. However, 

potential effect size cutpoints (i.e., Cohen’s d, Glass’s Δ or Hedges’s g), are all based on 

assumptions of normally distributed data. Because we found these assumptions unrealistic for 

most critical care outcomes, and the inputs difficult, if not impossible to back calculate from the 

published findings, we limited our power assessments to trials using binary outcomes. Second, 

our review was limited to adult critical care RCTs published in 16 selected journals. Third, since 

we relied on published data (and online supplements when available), changes in journal 

requirements over time may have contributed to certain reporting omissions (e.g., funding 

information or CONSORT diagrams). Fourth, important design issues such as allocation 

concealment, blinding or masking and ascertainment bias were not assessed. Finally, while we 

implemented an exhaustive search with oversight from a medical librarian, it is conceivable that 

our search strategy did not identify all eligible trials.  

In summary, we believe greater dialogue is needed to determine the utility of nonmortal 

outcomes to patients, providers, and payers, and to identify elements of trial design and analysis 

that are associated with the significance of results (Naylor & Llewellyn-Thomas, 1994; Spragg et 
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al., 2010). Rather than abandoning RCTs, the results suggest opportunities for designing critical 

care trials more efficiently. Actionable first steps might include consensus building among the 

critical care community (including journal editors) regarding a minimum core outcome set 

(Blackwood et al., 2014; Young et al., 2012), methodological work to improve strategies for 

measuring these outcomes, and closer scrutiny of submitted manuscripts to ensure an “honest” 

power calculation, which should in turn encourage more realistic trial design.  

In the subsequent chapters we examine some of these considerations by focusing on 

nonmortal outcome measurement and analysis. 
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Table 2.5. Selected recommendations for critical care trial design  

Domain Hypothesis Recommendations to potentially improve design 

Study 
population 

Treatment-effect 
heterogeneity might lead 
to a diluted effect estimate 
because while 
interventions work for 
certain patients, others 
are too sick and/or have 
too many competing risks 
for death for singular 
interventions to be of 
benefit. 

 Stratified randomization. 

 Pre-specified severity of illness adjustment 
when estimating treatment effects (Hernandez 
et al., 2004).  

 Stratification of trial results based on severity 
of illness at baseline (Kent et al., 2008; Kent & 
Hayward, 2007). 

 Adaptive trial designs (e.g., using biomarkers 
to stratify patients into more homogeneous 
subgroups (Angus & van der Poll, 2013), 
event-driven adaptive trials (Ranieri et al., 
2012), or starting trials with several arms and 
then adjusting sample sizes (Friede & Kieser, 
2006) or narrowing arms based on observed 
interim safety and efficacy data (Lewis et al., 
2013)).  

Participant 
accrual and 

retention 

RCTs are sufficiently 
powered but patient 
attrition leads to 
appreciable post-
randomization losses so 
that the intention-to-treat 
analyses are highly 
conservative. 

 Incorporation of patient attrition estimates 
when making sample size calculations. 

 Improved models of informed consent (Scales, 
2013) and potentially incentives for research 
participation (S. D. Halpern, 2011a). 

Statistical 
power 

calculations 

Even when the target 
sample size is achieved 
and retained, RCTs may 
be insufficiently powered 
to detect relatively small 
but important effects on 
appropriate outcomes. 

 Increased meta-studies to better inform control 
arm event rates (e.g., (Stevenson et al., 
2014)). 

 Use of more realistic and conservative 
predicted treatment effects when estimating 
sample sizes. 

 Use of continuous outcomes when possible. 

 Reconstruction of binary endpoints into 
categorical endpoints to improve statistical 
efficiency (McHugh et al., 2010; Roozenbeek 
et al., 2010).  

Outcome 
Outcome measures are 
inappropriately specified 
or analyzed.  

 Consensus development among trial groups 
and intensivists about follow-up periods and 
definitions of outcomes for specific conditions 
to support comparisons across trials (e.g., 
meta-analysis) (Blackwood et al., 2014; Young 
et al., 2012). 

 Novel methods for handling right-censoring 
due to deaths in analyses of quality of life and 
other nonmortal outcomes (Rosenbaum, 
2006). 

The following references contributed ideas presented in this table: (Aberegg et al., 2010; Angus 
et al., 2010; Annane, 2009; McAuley et al., 2010; Ospina-Tascon et al., 2008; Reade & Angus, 
2009; Rubenfeld & Abraham, 2008; van Meurs et al., 2008).  
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CHAPTER 3. NONMORTAL TRIAL ENDPOINTS: EMPIRICAL FRAMEWORK FOR A CASE 

STUDY OF INTENSIVE CARE UNIT LENGTH OF STAY  

 

Rationale for examining nonmortal endpoints 

The objective of this chapter is to summarize the conceptual framework and empirical 

methods used for the statistical simulation studies that are reported in Chapters 4 and 5. These 

two chapters focus on nonmortal endpoints, with ICU LOS as a case illustration.  

As a sizeable proportion of ICU-based RCT study subjects die before the trials are 

completed (Mebazaa et al., 2016), a mathematical tension has emerged for future trial design. 

If researchers continue to choose mortality as an endpoint (thus powering trials for a difference in 

proportions), trials will either have to enroll substantially larger patient populations, or pursue 

increasingly larger treatment effects. The former option potentially limits the feasibility of trials, 

and the latter option increases the risk of missing small, but clinically important treatment effects.  

Accordingly, several thought leaders and trial consortiums in critical care have advocated 

the importance of validating patient-centered and clinically relevant nonmortal endpoints (Opal et 

al., 2014; Spragg et al., 2010; Young et al., 2012). However, lack of agreement concerning 

specific definitions and analytic methods for these outcomes may limit the external validity and 

applicability of RCT findings (Blackwood et al., 2014; Contentin et al., 2014). Therefore, Chapters 

4 and 5 seek to contribute knowledge on the current scope of methods used to assess nonmortal 

endpoints, and illustrate potential modifications in interpretation that may achieve the stated goal 

of improving the design and interpretation of critical care trials. 

 

Intensive care unit length of stay 

In Chapter 2, we found that ICU LOS is the most frequently reported primary or 

secondary outcome among ICU-based trials. ICU LOS is a promising nonmortal trial endpoint for 
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at least five reasons. First, LOS is easily measured from claims data and electronic health 

records. Second, LOS is important to patients and their families, whose quality of life is impacted 

by hospitalization and intensive care (Iwashyna, 2010). Third, LOS is relevant to all patients, in 

contrast to other common nonmortal ICU trial outcomes, such as ventilator-free days and organ-

failure-free days. Fourth, LOS is a practical measure of resource allocation that can be quantified 

in economic terms (Cooke, 2012; Dasta et al., 2005; Kahn et al., 2008; Rapoport et al., 2003). 

Fifth, continuous outcomes such as LOS generate greater statistical power than dichotomous or 

categorical outcomes, thereby facilitating detection of effective treatments (Altman & Royston, 

2006; McHugh et al., 2010).  

 

Designing a simulation study of intensive care unit length of stay 

In our conceptual framework of ICU LOS, we identified several processes, including 

overall mortality, mortality differences, and procedural factors that may affect the total duration of 

ICU stay of a study cohort. In Chapters 4 and 5, we isolate these processes and generate 

subsequent distributions of ICU LOS to examine how the interpretation of treatment effects for 

continuous, duration-based endpoints can be challenged by issues related to informative 

censoring from mortality and measurement error. While each analysis focuses on distinctly 

different aspects of interpreting LOS treatment effects, the empirical approach for each is 

interrelated. Therefore, we present the general summary used for each analysis here to avoid 

redundancy within each chapter.  

Both of these research studies rely on the analysis of simulated (i.e., hypothetical or 

artificial) ICU LOS distributions. Simulating a LOS distribution that reflects potentially real-world 

settings is not a straightforward process. For example, the ICU LOS for a given trial population 

consists of a heterogeneous mix of subjects who died and those who survived. Consequently, 

ICU LOS may represent two very distinct clinical outcomes; for some subjects, ICU LOS may 

represent time to death, and for others, represents time to clinical improvement. Understanding 
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how changes in mortality (Chapter 4) or measurement error among survivors (Chapter 5) can 

impact the interpretation of a LOS estimate requires that the analyst can isolate these processes 

and to keep other processes identical so that any remaining sources of variability are removed.  

To achieve the inferential aims of each chapter, we cumulatively employ three different 

approaches to data generation. For each of the data generation processes, we use the survsim 

package in STATA (College Station, Texas), which uses a competing risk multistate model to 

generate time-to-events (Beyersmann et al., 2009; M. J. Crowther, 2011; M.J. Crowther & 

Lambert, 2012). In each setting, we manipulate cause-specific hazards for death and discharge to 

generate ICU LOS. Utilizing this data generation process, we then assume an intervention could 

modify the overall LOS distribution through three mechanisms based on the goal of the 

simulation:  

1. LOS among survivors and LOS among decedents are independent, such that a 

change in one does not impact the other.  

2. LOS among survivors and LOS among decedents are correlated, such that an effect 

of an intervention among survivors could reduce the fraction of mortality (i.e., 

mortality rate) in the treatment arm because patients are discharged faster, but an 

intervention does not impact the time-do-death (i.e., hazard) among those who die. 

3. LOS among survivors and LOS among decedents are correlated, such that an effect 

of an intervention that modifies the time-to-death among decedents could also modify 

the time-to-discharge, as saved patients would shift into the risk-set for discharge and 

then be exposed to the discharge hazard.  

Each approach has merits when the goal is to understand how different sources of bias 

can manifest in treatment effect estimates. We employ the third approach in Chapter 4. In this 

analysis we are precisely interested in how changes in mortality can modify summary estimates 

and statistical comparisons of ICU LOS. While the duration outcome in these chapters is LOS, 

such a decision is semantic, such that any duration could be selected for the hypothetical 
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simulation (i.e., duration of mechanical ventilation). Accordingly, in this analysis we assume that 

an intervention does not change LOS among those patients who would always survive. We then 

modify the cause-specific hazard for death and quantify how statistical comparisons of LOS 

change using a range of statistical models found to be used in the systematic review. Therefore, 

we are able to gain insight into how mortality can modify LOS distributions and thus, statistical 

comparisons. 

In Chapter 5, the goal is to estimate how factors extraneous to a subject’s clinical state 

can also impact treatment effect estimates. We utilize the first and second data generation 

frameworks above to achieve this goal. We chose to use these two settings because the choice 

of either permits differences to exist between the total number of survivors, who are all potentially 

exposed to this form of measurement error. First, we assume that there is a group of patients who 

will always die regardless of their intervention arm, as well as a group who will always survive. A 

clinical analog might be an intervention that reduces the rate of an infection that is not life-

threatening. As a result, a shorter LOS is observed among treated patients since the control arm, 

on average, requires additional ICU care until resolution of infection. However, survival is not 

affected. We call this the ‘principal stratification’ framework as we only modify LOS among those 

in the cohort who are discharged alive from the ICU. In the second setting, we alter the setting 

above such that the intervention, in reducing ICU LOS, indirectly reduces overall mortality in the 

treatment arm among a subgroup of patients who would have died in the ICU in the previous 

framework. Thus, we conceptualize the trial population to be comprised of those who will always 

survive, those that would have died in the ICU but since they were discharged faster survive their 

ICU stay, and those who would always die during their ICU stay. The intervention only impacts 

the first two patient types, thereby reducing the overall ICU mortality rate, but having no impact on 

the time to death among those who die. Stated another way, such an intervention only passively 

reduces ICU mortality by reducing risks associated with being in the ICU (e.g., sepsis, blood 

stream infection) because treated subjects are discharged faster. This aligns with the 

conventional ‘competing risk’ framework. 
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CHAPTER 4. HETEROGENEITY IN THE DEFINITION AND ANALYSIS OF INTENSIVE CARE 

UNIT LENGTH OF STAY IN CRITICAL CARE TRIALS 
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Introduction 

This chapter focuses on empirical and interpretive challenges that may arise when 

interpreting ICU LOS when mortality is differential between study arms. Since critically ill patients 

commonly die, comparisons of nonmortal endpoints must properly account for these deaths either 

empirically or conceptually. Otherwise, the truncation of follow-up or censoring from death may 

cause nonrandom missing outcome data, potentially eroding the assurance of unbiased inference 

and thus interpretation when summarizing differences between study arms (Brock et al., 2011; 

Hernán & Robins, 2016; McConnell et al., 2008; Schoenfeld et al., 2002). 

While some prior work has considered statistical models to account for this potential bias 

(Checkley et al., 2010; Chiba & VanderWeele, 2011; Deslandes & Chevret, 2010; Hayden et al., 

2005; Resche-Rigon et al., 2006; Yang & Small, 2016), this paper focuses on understanding how 

nonmortal outcomes (using ICU LOS as an example) are examined in practice, and on gauging 

the potential impact of small, non-significant treatment-associated mortality effects on the results 

of typical analyses of nonmortal trial outcomes. To accomplish these goals, we extend the 

systematic review from Chapter 2 to assess the variability in the definitions and measurement of 

LOS in published RCTs, with specific attention to the methods used by researchers to manage 

competing events (i.e., death) when comparing nonmortal endpoints between study arms. 

Second, we use statistical simulations to assess the biases that may be generated from the most 

commonly used analytic methods found in the review. Finally, we use these findings to guide 

recommendations for reporting and analyzing LOS as an outcome in ICU-based RCTs, with 

extensions to other longitudinal, nonmortal outcomes. 

 

Methods 

Systematic review 

For the present analysis, we extended the database detailed in Chapter 2 by two years, 

such that it now spans the period from 01/2007 through 06/2015. For each trial, the abstractors 



www.manaraa.com

37 

 

(MOH and LS) identified whether LOS was the primary or secondary outcome, the definition 

provided by the authors, the statistical methodology used to compare LOS between treatment 

arms, and how the LOS distribution was reported (e.g., survivors only).  

 

Illustration of interpretive bias through simulation 

 Building conceptually from recent critical care simulation studies and expert roundtables 

(Iwashyna et al., 2015; Mebazaa et al., 2016; Sjoding et al., 2015), we designed three simulation 

settings to illustrate how different mortality effects that may occur in reality could impact the 

interpretation of LOS. In setting 1, there was no treatment-associated mortality reduction (i.e., we 

simulated a perfectly null effect). In setting 2, the intervention imposed a constant effect over time 

(i.e., proportional hazards) such that the probability of a mortality reduction was equal for all 

patients. In setting 3, we isolated the treatment-associated mortality reduction to the simulated 

patients with a LOS in the upper tertile (i.e., time-dependent treatment effect) so as to reflect the 

possibility that the treatment might help only the sickest patients who tend to have longer LOS 

(Moitra et al., 2016; Zimmerman et al., 2006). Although we simulate beneficial mortality effects of 

treatment, identical results would manifest had we imposed the mortality reduction on the control 

arm. Thus, the results of this approach also apply to cases of harmful treatment effects.  

As outlined in Chapter 3, to isolate the impact of these potential treatment-associated 

mortality effects on the interpretation of LOS comparisons, the simulated data are set such that 

the intervention would truly have no effect on LOS if all patients survived. Specifically, the 

parameter controlling the treatment effect was set to zero in the discharge sub-model, and set to 

give the imposed mortality reduction (2.5% or 5.0%) in the death sub-model with administrative 

censoring at 30 days. Thus, any observed LOS effect would be due to chance or the bias 

produced by the mortality effect. Such bias could arise if the treatment extended patients’ LOS by 

saving them, or if it lengthened time-to-death among some patients who nonetheless die.  

We express the primary outcome of interest of all simulations as the “interpretive error 

rate,” defined as the percentage of simulations in each setting reporting a statistically significant 
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difference in LOS between the intervention and comparator arm. The expected interpretive error 

rate due to chance is 5% using two-sided statistical tests with alpha=0.05. 

 To enhance the range of trials to which our results may apply, we adjusted four 

parameters in each of the three settings. First, the control-group 30-day mortality was set to 30% 

or 10%, representing relatively high and relatively low in-hospital mortality rates for modern 

RCTs. Second, we imposed an absolute mortality reduction of 2.5% or 5.0% in the intervention 

arms. We chose these effects because they would be clinically important, but most ICU-based 

RCTs would fail to detect them as statistically significant. Third, we examined short (median 3 

days, interquartile range [IQR]=1.5-4.5) and long (10 days, IQR=5-17) LOS distributions, guided 

by ICU-based RCTs where LOS was the primary outcome (Ali et al., 2011; Amrein et al., 2014; 

Casaer et al., 2011; Kerlin et al., 2013). Finally, we simulated the total sample size as 250 or 

1000 patients (125 or 500 patients per arm). This approach yields 2 x 2 x 2 x 2 = 16 simulations 

to be run in each of the three settings. However, we only applied a 2.5% absolute mortality 

reduction in settings in which the control-group mortality rate was 10% because a single ICU 

intervention would be unlikely to produce a 5% absolute reduction in mortality from 10%, and if it 

did, this effect would commonly reach statistical significance. Simulated data were generated as 

outlined in Chapter 3 (approach 3) using the survsim package in STATA, and 1,000 Monte Carlo 

replicates were used in each simulation setting. 

 We did not examine the statistical properties of ICU free-days or of changing the 

valuation of LOS to be the longest LOS or never discharged because the valuation of death as a 

specific LOS value has subjective elements that are beyond the scope of this work. 
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Results 

 We identified 193 eligible RCTs among ICU patients from 2007-2015. Of these, 150 

RCTs (78%) reported on ICU LOS, with 132 of these trials explicitly reporting ICU LOS as an a 

priori outcome. In 6 trials LOS was specified as the primary outcome, and in 126 it was specified 

as a secondary outcome.  

 

Definition and measurement of LOS 

 In 70 (47%) RCTs reporting on ICU LOS, insufficient details on the definition or 

measurement of LOS were provided to identify how ICU LOS was measured. Of the remaining 80 

(53%) RCTs, at least either the start or end time was reported by the authors (n=54, 36%) or we 

believed one of these times could be reasonably deduced (n=26, 17%) based on the text and 

detail related to the study design or other trial outcomes. In 70 trials that had a reported or 

deducible “start time,” LOS measurement began at: a) the time of ICU admission (47%) b) the 

time of randomization or trial enrollment (34%), or c) the time of initiation of the intervention (7%). 

In the remaining 11% of trials, more than one start time was reported or two or more of these 

times appeared to overlap. In 70 trials that had a reported or deducible LOS “end time,” these 

times were specified as: a) ICU discharge and/or death (93%), or b) time of resolution of critical 

illness (7%). As a result, ICU LOS could represent six distinct durations based on the current 

literature (Figure 4.1). In addition, precision in the reported units of LOS was also quite variable, 

with 60 (40%) trials reporting LOS in 24-hour periods without rounding to the nearest day, and 77 

(51%) trials reporting LOS as “days” without clarifying if days were calendar days or 24-hour 

periods. The remaining 9% reported LOS in hours (n=13). 

 

Statistical analysis of ICU LOS 

 The statistical analysis used to compare LOS between study arms was unclear or not 

identifiable in 3 of the 150 trials and 10 trials reported to use >2 distinct statistical models. One  



www.manaraa.com

40 

 

Figure 4.1. Variation in the reported definition of intensive care unit length of stay  

 
 

trial assessed LOS as a binary outcome (i.e., prolonged LOS [LOS > 4 days] or not), and the 

remaining 146 trials treated LOS as a continuous outcome. Based on the information provided by 

the authors we concluded that 75 trials compared LOS using a non-parametric rank-based test, 

with 61 of such trials explicitly stating the use of this method. Similarly, we concluded that 51 trials 

used a linear parametric model; 32 of these explicitly stated this. Twenty-three trials used time-to-

event methods, specifically a Cox proportional-hazards model (n=14) or a log-rank test (n=9).  

  

Treatment of LOS among decedents 

 In the analysis of LOS, 92 trials (61%) reported the assessment of a pooled LOS 

distribution without discussion or statistical consideration of mortality, 12 (8%) studies assessed a 

stratified sample of survivors and 4 trials (3%) reported both a pooled and stratified result (these 

approaches are detailed in Table 4.1). The remaining studies reported at least one LOS value or 

approach that explicitly modeled or acknowledged mortality. A version of the ICU free-day 

outcome was reported in 19 (13%) trials, with the valuation of death (always equal to zero days) 

explicitly reported in ten trials. Nine trials (6%) changed the value of LOS to be the longest LOS 

(n=2) using a non-parametric model or to never be discharged in a time-to-event model (n=7). 

Nine trials (6%) (including two that also used an infinite time approach) reported using a time-to-

event model explicitly stating to have censored LOS at the time of death while the remaining did 

not clearly report their censoring approach.  
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Table 4.1. Leading approaches used to account for mortality in the analysis of length of stay  

 

Approach Conceptual and empirical 
issues 

Consequence Hypothetical trial 
scenario that would 

complicate approach 

Contrast pooled 
LOS distribution of 
survivors and 
decadents together 
without 
acknowledging 
death. 

LOS distribution is composed 
of treatment effects that may 
impact overall measures of 
dispersion but limited to a small 
number of patients. 

Estimate from 
statistical test may 
be hard to interpret 
or misleading in 
isolation.  

Patients saved by a 
treatment may 
experience a longer 
LOS that would 
impact the 
interpretation of the 
statistical 
comparison.   

Construct and 
contrast a 
composite endpoint 
that includes both a 
value for death and 
LOS (i.e., ICU free-
day metric where 
those who died are 
assumed to have 0 
ICU free-days). 

Valuing death inserts 
subjectivity to statistical 
analysis and fundamentally 
changes the causal question. 
ICU free-day metric does not 
have real world translation.  

Estimates “net 
effect” of 
intervention. 
Disentangling effect 
of an intervention on 
either death or LOS 
is underpowered 
and limited by issues 
related to 
multiplicity. 

Events of interest 
move in opposite 
directions, e.g., 
decreasing mortality 
and elongating LOS. 

Contrast the LOS 
distribution among 
survivors only.  

Survival may be affected by the 
treatment. Thus, it is a post-
randomization variable. 
Conditioning on this can erode 
randomization inference and 
reduces study power.   

Estimate from 
statistical test may 
be hard to interpret 
or misleading in 
isolation.    

Saved patients are 
among the sickest, 
and thus experience 
longer LOS that 
would impact the 
interpretation of the 
statistical 
comparison.   

Contrast time-to-live 
discharge in a time 
to event model and 
treat mortality as a 
form of non-
administrative 
censoring. 

Risk set subsequent the first 
death comprises a new subset 
of patients who have not 
previously died or been 
censored. Thus, balance of 
confounders assumed by 
randomization is potentially 
eroded. Statistical model 
assumes a “latent” LOS for 
censored patients – i.e., the 
LOS that patients who die are 
assumed to have had if they 
had lived, which is unknowable. 

Estimate from 
statistical test may 
be hard to interpret 
or misleading in 
isolation. May cause 
selection bias unless 
assumptions of the 
model can be 
proven. 

Heterogeneous 
treatment effects 
based on severity of 
illness or 
comorbidities.  

Contrast time-to-live 
discharge in a time 
to event model and 
set the time to event 
to be infinite or 
longest possible 
LOS.  

Patients do indeed have a 
chance of discharge in time-to-
event model. Thus the 
statistical density of the time-to-
event distribution is flawed, 
intentionally, and does not 
consider death as a competing 
event for discharge.  

Estimate from 
statistical test may 
be hard to interpret 
or misleading in 
isolation.    

Upon death, which 
will happen often in a 
trial, patients are 
removed from risk 
set.  
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Simulation study 

The validity of our simulation approach was confirmed by the results in the control setting 

(setting 1) in which we assessed rates of interpretive errors using the most commonly reported 

methods of analyzing LOS data when there was no treatment effect on LOS or mortality. In this 

setting, LOS differences appeared nearly 5% of the time, as would be expected by chance (Panel 

A, Figures 4.2 & 4.3), and were not impacted by the overall mortality rate (not shown).  

By contrast, all simulations were susceptible to interpretive errors when the treatment 

reduced mortality by 2.5% or 5.0%. The magnitude of bias depended on the total sample size, 

magnitude of the mortality effect, and the patients to whom the effect applied (i.e., uniform versus 

heterogeneous treatment effects) (Figures 4.2-4.6). When the mortality treatment effect was 

uniform (equal), we found that summary comparisons of the entire sample (which ignore 

differences between deaths and live discharges) performed the worst, with little difference 

between parametric and non-parametric comparisons. Similarly, we found high rates of 

interpretive errors across settings when these statistics were applied only to survivors. This effect 

was most pronounced when the treatment-associated mortality effect was isolated to the sickest 

patients (setting 3). Overall, time-to-event (discharge) analyses with censoring for death provided 

the lowest interpretative error rates. However, separate biases created by informative censoring 

may cloud the interpretation of results in time-to-event models (see discussion).  
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Figure 4.2. Percent of simulations exhibiting interpretive errors (primary setting, short LOS, 
treatment effect of 2.5%) 

 
Notes: Based on chance approximately 5% of the simulations would be expected to be 
statistically significant, denoted by bars at -2.5% and 2.5% since we are using a two-sided test. 
Settings: Control group mortality rate of 30%, short LOS. 

Figure 4.3. Percent of simulations exhibiting interpretive errors (primary setting, long LOS, 
treatment effect of 2.5%)  

 
Notes: Based on chance approximately 5% of the simulations would be expected to be 
statistically significant, denoted by bars at -2.5% and 2.5% since we are using a two-sided test. 
Settings: Control group mortality rate of 30%, long LOS. 
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Figure 4.4. Percent of simulations exhibiting interpretive errors (sensitivity analysis, control group 
mortality of 10%, uniform treatment effect of 2.5%) 

 
Notes: Based on chance approximately 5% of the simulations would be expected to be 
statistically significant, denoted by bars at -2.5% and 2.5% since we are using a two-sided test. 
Settings: Control group mortality rate of 10%, long & short LOS. 

Figure 4.5. Percent of simulations exhibiting interpretive errors (sensitivity analysis, control group 
mortality of 30%, uniform treatment effect of 5%) 

 
Notes: Based on chance approximately 5% of the simulations would be expected to be 
statistically significant, denoted by bars at -2.5% and 2.5% since we are using a two-sided test. 
Settings: Control group mortality rate of 30%, long & short LOS. 

 

 



www.manaraa.com

45 

 

Figure 4.6. Percent of simulations exhibiting interpretive errors (sensitivity analysis, control group 
mortality of 30%, heterogeneous treatment effect of 5%) 

 
Notes: Based on chance approximately 5% of the simulations would be expected to be 
statistically significant, denoted by bars at -2.5% and 2.5% since we are using a two-sided test. 
Settings: Control group mortality rate of 30%, long & short LOS, 
  

Discussion  

 This study documents large variability in how LOS is defined and measured in critical 

care RCTs, and demonstrates the importance of accounting for the interplay between treatment 

effects on mortality and duration of illness when reporting nonmortal endpoints. Several specific 

results yield recommendations for the future measurement, analysis, and reporting of ICU LOS.  

First, we identified a lack of consensus regarding how best to conceptualize ICU LOS. 

For instance, LOS was variably defined as time to discharge or death, as the time to live 

discharge, or in other ways. Similarly, few trials clarified the start or end time of their LOS 

measurement, and those that did showed a lack of consensus among three potential starting 

times (the time of admission, randomization, or intervention). Such variability limits the ability to 

compare interventions’ effects on LOS across trials. Similar problems arise from the noted 

variability across trials in the scale of LOS reporting (i.e., calendar days versus 24-hour periods 

without rounding versus hours), which may influence the magnitude of measurement errors.  
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Second, we identified at least five distinct analytic approaches that were commonly used 

to compare LOS between treatment arms in modern ICU-based trials (Table 4.1). These 

variations in statistical methods are not merely technical considerations, but rather lead to the 

testing of fundamentally different research questions. The most common approach is to contrast 

the overall LOS distributions in each treatment arm, without accounting for mortality. Our 

simulations suggest that this may generate misleading results in the context of small mortality 

effects that are commonly observed in trials, even when these effects are themselves not 

statistically significant. This degrades the ability to differentiate interventions that seem to 

lengthen LOS due to beneficial, albeit perhaps underpowered mortality effects, versus those that 

truly lengthen LOS without such corresponding benefits. 

The other four commonly used approaches acknowledge the potential bias that 

differential mortality can create, but their use raises other interpretive challenges (Table 4.1). 

First, assessment of LOS among survivors reduces analytic sample sizes, which may be small in 

critical care trials to begin with. Additionally, such restriction can yield misleading results if a 

treatment shifts very sick patients from the “deceased” cohort to the “survived” cohort, where they 

may contribute an unusually long LOS (Lin et al., 2014). Setting 3 of the simulation showed that 

this approach can be especially problematic in the common cases in which treatment effects are 

not uniform (Iwashyna et al., 2015).  

Second, investigators may use a time-to-event model that estimates the time to live 

discharge. Although censoring on death is likely superior to ignoring it altogether, such censoring 

assumes that death is random and non-informative. This assumption is almost certainly 

untenable (D. R. Cox et al., 1992), as patients’ acuities and comorbid conditions are related to 

both their probability of dying and their LOS if they survive. Thus, the probability of censoring may 

be time-dependent. If so, censoring could introduce bias despite randomization (Aalen et al., 

2015). A third approach values death as a fixed LOS for decedents. The most frequent valuation 

approach uses an ICU free-day method, where LOS is set equal to the maximum follow-up time 

minus ICU LOS for live discharges and 0 for decedents (Schoenfeld et al., 2002). This approach 
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quantifies the “net-benefit” of a composite clinical outcome, although it lacks a clear translation 

into clinical or economic benefit without separating the mortality and LOS components. Assessing 

potential interpretative errors when using ICU free-days would require a complex assessment of 

patient preferences as well as disparate treatment effects to fully evaluate their utility (e.g., 

increase in mortality among some patients and a decrease in LOS among others) and thus are 

not included in our current study.  

A similar consideration regarding the “value” of death is raised in the fourth approach with 

changing LOS to be the longest observed LOS or treating the patient as never being discharged if 

they died during the study period. In a time-to-event framework this raises potential empirical 

issues due to the intentional distortion of the at-risk sample over time that needs to be better 

understood to avoid unintended introduction of another empirical bias. A more recently proposed 

approach that surmounts some of these conceptual problems is to code LOS as the longest 

possible LOS (infinite time), and use non-parametric tests to compare LOS distributions among 

treatment and control groups (Lin et al., 2014). Simulations using this approach suggest that it 

can accommodate a range of values for death, such as coding it at the 80th percentile of the LOS 

distribution or as the worst possible LOS (Lin et al., 2014). Thus, the approach enables 

investigators to assess the possibility that the conclusions to be drawn may be sensitive to how 

patients value death versus prolonged ICU stays. This approach is also flexible in that it enables 

investigators to estimate treatment effects on the median LOS, 75th quantile of the LOS, or any 

other point in the distribution (Lin et al., 2014). However, further experience with this approach is 

required to determine whether it will be acceptable to and understood by key stakeholders. 

Until such experience is gained, and based on the systematic review and simulations 

presented in this manuscript, we recommend general standards for reporting LOS (Table 4.2) that 

are more general than previously published recommendations for free-day outcomes (Contentin 

et al., 2014) and broadly applicable to nonmortal outcomes. In addition, researchers may 

consider using more recently developed alternative statistical inference methods (Checkley et al., 

2010; Deslandes & Chevret, 2010; Resche-Rigon et al., 2006), based on their inferential 
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objectives in primary or secondary analyses. Finally, if longer follow-up after ICU discharge is 

available (e.g., 6-month or 1-year mortality), principal stratification methods may be considered to 

report nonmortal treatment effects (Chiba & VanderWeele, 2011; Hayden et al., 2005; Yang & 

Small, 2016).  

 

Limitations 

 A limitation of the systematic review portion of this study is that the categorization of what 

authors had done in their trials was limited by differential reporting practices by authors as well as 

standards and requirements at different journals (e.g., publication of trial protocols) which may 

have impacted our ability to accurately document the LOS definitions and analytic methods. For 

example, it is possible that many trials utilized detailed and standardized definitions and 

measurements of LOS, but did not fully report them. This may be particularly true when LOS was 

a secondary outcome measure. While this is unlikely to change the overall interpretation of the 

results, this reality is important as the CONSORT standards for outcome reporting should apply 

equally regardless of the journal, and researchers pursuing meta-analyses and systematic 

reviews would encounter similar barriers when aggregating trial results. Thus, this limitation as 

well as the issues we highlight remain important to promote the generalizability and aggregation 

of knowledge from individual trials.  

Second, though we sought to be exhaustive, it is possible that our search did not identify 

some published trials. Such omissions are unlikely to have been systematic, and so would not be 

expected to alter any of our conclusions.  

 Third, the simulation studies we presented were intentionally non-exhaustive of all 

potential ICU trial settings. Statistical simulation studies provide a unique lens to model 

hypothetical trial scenarios, and we have chosen a limited set of illustrative scenarios to 

understand if missing or truncated outcome data can bias how we assess interventions in the 

ICU. Many other scenarios are conceivable in an actual trial, such as those that include a 

treatment effect on LOS directly. These cases were not modeled in our simulations. However, the 
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goal of this manuscript was to highlight prevalent problems that could be created due to small 

changes in mortality due to an intervention, rather than to provide an exhaustive accounting of the 

magnitudes of these problems in all possible scenarios. Future work may help to understand 

better the specific cases in which the magnitudes of the general biases we report are likely to be 

most extreme, as well as understanding how simultaneous changes in the risk of death, disease 

progression, and time-to-discharge among different patients can obscure or exaggerate effect 

sizes reported in trials. Finally, different data generation processes and assumptions may lead to 

different interpretations of the simulations. 

 

Conclusion 

Although ICU LOS is commonly used as an outcome measure in ICU-based RCTs, it is 

inconsistently reported and analyzed. Problems with heterogeneity of outcome use and definition 

are not limited to critical care, as documented in prior assessments of Cochrane reviews and 

ClinicalTrials.gov entries (Hirsch et al., 2013; Tovey, 2011). The present study shows how these 

choices may impact the interpretation of trial results. While challenging empirically and 

conceptually, we propose that researchers could employ some simple practices in reporting trial 

results to aid in their interpretation and synthesis. More granular reporting of mortality throughout 

the duration of follow-up, with reporting at the exact time the nonmortal measure is assessed, 

would help assess the risk of biased interpretation. Employing predefined secondary analyses 

with novel statistical approaches, such as the aforementioned rank-based method (Lin et al., 

2014) and joint modeling approaches (Deslandes & Chevret, 2010), would enable experience to 

be gained with these methods so as to determine whether they ought to become standard. 

Finally, even very basic, but often ignored practices such as reporting the start- and end-time 

used to define LOS and the values of LOS applied to those patients that die during follow-up 

would greatly improve the interpretation of nonmortal endpoints in ICU-based RCTs.  
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Table 4.2. Recommendations for reporting and analyzing nonmortal endpoints in critical care 
trials 

 

Domain Problem identified in review Recommendation 

Measurement 

Trials reporting start and end times varied in 
their definitions, and many do not report any 
definition at all. 

Clear indication of the start and 
end time of the LOS 
measurement. 

Trials predominantly report LOS in "days." 
Calendar days and 24-hour periods are 
different, and can further vary based on the 
abovementioned issue of start and end times. 
This potentially adds measurement error. 

Granularity and specificity in the 
measurement of LOS. 

A version of the ventilator free-day was used 
for ICU free-days, however, the treatment of 
death and follow-up period was not well 
defined in certain trials. 

Detailed definition of composite 
outcomes that include LOS. 

Analysis 

Many trials simply state that nonparametric or 
parametric statistical models were used 
without any further detail. It is unclear in 
some trials which model was used to 
generate the p-value. 

Stating exact model used to 
compare LOS between study 
arms. 

Similar to the issues noted for ICU free-days, 
values applied to death are sometimes used 
but not clearly stated. 

Clearly stating assumptions of 
statistical analysis related to the 
treatment of LOS among 
decedents (e.g., censoring). 

The analytic sample assessed is not always 
the full trial population. If survivors only are 
analyzed it may not be clear which mortality 
cut-off was used to define this group (e.g., 
ICU, hospital, or 28-day mortality). 

Cleary stating which patients 
were included in the analysis. 

Mortality is often reported at a few discrete 
time points (e.g., 28 or 60 days) or without 
clarity of total follow-up time (e.g., ICU 
mortality). This makes it difficult or impossible 
to assess trials for the potential of interpretive 
bias in the reporting of nonmortal endpoints if 
non-differential mortality occurs.  

Report mortality rates at more 
granular time periods (e.g., 7, 
14, 21, and 28 days). 

Most trials do not execute sensitivity analyses 
using advanced statistical methods.  

Though the ideal or “correct” 
method for statistical inference 
is unclear, utilizing secondary 
methods such as competing 
risk, principal stratification, or 
joint statistical models can help 
researches assess their results. 
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CHAPTER 5. MEASUREMENT ERROR IN INTENSIVE CARE UNIT LENGTH OF STAY 

ESTIMATES DUE TO PATIENT FLOW 
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Introduction 

In Chapter 4 we focused on potential bias and misinterpretation due to differential 

mortality. In this chapter we focus on another issue. Specifically, when evaluating the effect of a 

clinical intervention on LOS, one wishes to determine the intervention’s impact on the time 

required for patients to become clinically ready for ICU discharge. Yet ICU-based RCTs typically 

report total LOS, defined as time until actual discharge. Because most ICU discharges entail 

patients transitioning to a step-down unit or general ward, factors such as bed availability and 

clinical rounding schedules may impact actual discharge time, independent of patients’ illnesses 

or the interventions they receive (Wagner et al., 2013).  

 In this paper we examine the epidemiology and implications of such ‘immutable time,’ 

which is termed as such because this time cannot plausibly be affected by most ICU-based 

interventions such as pharmacotherapies or ventilation strategies (Figure 5.1). We first perform a 

systematic review of ICU-based RCTs to identify studies that have defined ICU LOS using 

discharge readiness as an end time rather than actual discharge. Next, using statistical simulation 

informed by our own RCT and administrative data, we quantify the extent to which immutable 

time may actually bias estimates of treatment effects across a range of possible trial scenarios.  

Figure 5.1. Decomposition of length of stay in an intensive care unit 

 

Physical 
departure 
from ICU 

room

ICU 
admission

Trial enrollment 
or 

randomization

Medical resolution of 
critical illness 

(medically ready to go)

Discharge order 
initiated 

(administratively 
ready to go)

Immutable period 
of LOS

Immutable period 
of LOS

Modifiable period of LOS

Total LOS
Start 

time

End 

time



www.manaraa.com

53 

 

Methods 

Empirical framework 

 Information or measurement bias is a type of bias that results from measurement error 

(Lash et al., 2009). We define immutable time as a research bias because the resulting measure 

of LOS erodes the precision of statistical comparisons between study groups with the potential to 

obscure small, but clinically relevant treatment effects, or to suggest a treatment effect that does 

not exist. Below, we provide a framework for this problem. Specifically, we assume that 

immutable time is a non-differential measurement bias of a continuous (but non-normally 

distributed) variable.  

The statistical model, 𝑌𝑖 =  𝑓(𝑋𝑖) +  𝜖𝑖, represents a common analysis conducted in RCTs 

to quantify the effect of an intervention, where 𝑌 is ICU LOS, and 𝑋 is a binary indicator for 

treatment arm generally measured without error, and 𝜖𝑖 indicates stochastic error. A parameter, 

𝛽, is used to quantify the difference between the intervention and control LOS. For example, in 

the linear model 𝑓(𝑋𝑖) =  𝛼 + 𝛽𝑋𝑖. However, in lieu of LOS based on patient readiness, 𝑌𝑖, the 

value of ICU LOS with immutable time, 𝑌�̃�, is measured, such that, 𝑌�̃� = 𝑌𝑖 + 𝜈𝑖 , where 𝜈𝑖 is the 

immutable time unaffected by treatment arm. We assume 𝜈𝑖 is independent of 𝑋𝑖  and 𝜖𝑖. Under 

this framework, the additional bias term, 𝜈𝑖, results in the following, 𝑌�̃�  =  𝑌𝑖 +  𝜈𝑖 =  𝑓(𝑋𝑖) + (𝜖𝑖 +

𝜈𝑖) = 𝑓(𝑋𝑖) +  𝜃𝑖, where 𝜃𝑖 is an error term that is biased by measurement error. In some trial 

designs early immutable time may also occur between the time of ICU admission and exposure to 

an intervention (Figure 5.1), and would effectively increase the mean and variability of the 

immutable time distribution. 

Given that immutable time is essentially random and likely independent of treatment arm 

assignment, the analysis 𝑌𝑖 =  𝛼 +  𝛽𝑋 +  𝜖𝑖 (i.e., a linear model) should produce a correct 

estimate of 𝛽 quantifying the difference (treatment effect) between treatment with a normally 

distributed outcome and normally distributed measurement error. The statistical explanation of 
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why non-differential measurement error of an outcome (𝑌𝑖) would not bias the estimated 

treatment effect point estimate (�̂�) in linear model is as follows: 

�̂� =  
𝐶𝑜𝑣(𝑌𝑖 ,̃ 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

    =  
𝐶𝑜𝑣(𝑌𝑖 + 𝑣𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

    =  
𝐶𝑜𝑣(𝛼 +  𝛽𝑋𝑖 + 𝜖𝑖 + 𝑣𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

    =  
𝐶𝑜𝑣(�̃�, 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
+  𝛽

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
+   𝛽

𝐶𝑜𝑣(𝜖𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
+  𝛽

𝐶𝑜𝑣(𝜐𝑖 , 𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

    =  𝛽
𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟(𝑋𝑖)
 

    = 𝛽 

However, since neither ICU LOS nor immutable time, based on our empirical distributions 

(Figures 5.2-5.5) is normally distributed, it is unclear if this attenuation of the treatment effect will 

persist as variance may change with less predictability. Specifically, since classical measurement 

error has focused largely on linear regression models with normally distributed measurement 

error, it is not clear how immutable time could bias LOS treatment effect estimates.  

With small treatment effects, it is possible that the measurement error will obscure 

treatment effects due to the resultant reduction in power. In other words, the variance will be 

larger than was presumed in calculating the required sample size. Further, as the size of a 

treatment effect increases, the more favorable signal-to-noise ratio would tend to mitigate the 

impact of this extra variance. Thus, we also hypothesize that the reduction in power due to 

immutable time would be most important in studies in which clinically relevant treatment effects 

are often numerically small, as is commonly true in ICU-based RCTs (Aberegg et al., 2010; 

Harhay et al., 2014; Rubenfeld, 2015). 
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Data analysis 

Literature review 

To identify trials accounting for time-to-discharge readiness in practice, we utilized the 

same data abstracted for Chapter 4, focusing specifically on those reporting the end time of their 

ICU LOS measurement.  

 

Secondary data analysis 

 We examined daily, weekly, and yearly variation in discharge immutable time, defined 

as LOSdischarge - LOSready-to-go (indicated by a bed request for the patient on a general ward), at our 

institution using two data samples. First, we reassessed data from the SUNSET-ICU trial, an RCT 

comparing outcomes among patients whose nighttime management was overseen by senior 

intensivists who were physically present in the ICU versus at home and available by phone 

(Kerlin et al., 2013). Subjects included all patients admitted to the medical ICU (MICU) of the 

Hospital of the University of Pennsylvania during a one-year period (09/12/2011 to 09/12/2012) 

(Kerlin et al., 2013). In this trial, for patients readmitted to the MICU within the same 

hospitalization, only the first MICU admission was included. Next, we extracted data on all 

patients admitted to the same MICU from 2010-2012 to examine LOS variations over several 

years, and to assess all discharges, not just index admissions.  

 

 

Simulation study 

We performed a simulation study based on the results of our analyses of the SUNSET 

trial data and of administrative data sets. First, we generated a LOSready-to-go distribution to 

approximate the ICU LOS distribution in the SUNSET trial using a Weibull distribution (median 

LOS of 2.5 days and IQR of 1.2-4.5). We assumed that the probability of death in the ICU was 

10%, 20% or 40%.  
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As detailed in Chapter 3, the goal of a simulation study is to isolate a specific process, 

and to keep other sources of variability identical. To isolate the effect of immutable time in our 

simulations, only the time to discharge was manipulated. To capture the potential variability of 

different critical care interventions, we conducted a simulation study that generated data using 

both a principal stratification framework where the fraction of deaths was identical in study arms 

and a competing risks framework where the faster time to discharge resulted in a lower ICU 

mortality rate among the treated (without modifying the hazard for death) (see Chapter 3 for 

additional details). The objective of the two approaches was to assess how different LOS models, 

which treat or value LOS among deaths differently, may be affected by immutable time. For 

instance, in a time-to-event model LOS among those who die may be censored.  

Second, we imposed hypothetical treatment effects of 0, 0.5, and 1 day at the median 

LOSready-to-go for the treatment arm. Next, three immutable time distributions of increasing size 

(medians of 8, 16 and 28 hours in settings 1, 2, and 3, respectively) and generated from a 

gamma distribution were randomly added onto the LOSready-to-go of survivors who were discharged 

(Figure 5.2). Thus, for each simulated trial there was an unbiased time-to-discharge-readiness 

(𝑌𝑖), and three LOS distributions with immutable time (𝑌�̃�). Setting 1 was based on late immutable 

time observed in the SUNSET Trial. Setting 2 was based on the longer distributions of late 

immutable time from our administrative data. Setting 3 assumed the combination of setting 2 and 

a median 12-hours of early immutable time between ICU admission and exposure to an 

intervention. We examined the impact of immutable time using four statistical approaches for 

comparing LOS that are commonly encountered in the literature as identified in Chapter 4. 

Specifically, the following methods identified in Chapter 4 were examined: 

1) nonparametric comparison (i.e., comparing the entire distribution with a Wilcoxon Rank-

sum test; 

2) parametric comparison (i.e., comparing the means and standard deviation using ordinary 

least squares linear regression or t-test);  
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3) time-to-event model (i.e., Cox proportional hazards model of the time-to-discharge with 

mortality as a censoring event); and, 

4) ICU free-days, where LOS is re-calculated as 30 days - LOS for survivors, and patients 

who die are given a fixed LOS of 0 free-days (Schoenfeld et al., 2002). ICU free-days are 

then compared using a nonparametric statistical model. 

 

Total sample size was varied across settings (200, 400, 600, 800, 1000 and 1500 

patients) to reflect the range of sample sizes observed in the majority of ICU-based trials 

identified in Chapter 2. All settings assumed an equal number of patients in each of the two study 

arms (1:1 randomization), and used one thousand Monte Carlo replicates. Administrative 

censoring occurred at 30 days. To quantify the potential effect of immutable time on the 

interpretation of analytic results, we summarized the percentage of times a two-sided statistical 

test in the three immutable time settings differed from the error-free-LOSready-to-go at the α=0.05 

level. Replicates were classified as false-positive if the intervention generated an effect on LOS at 

p<0.05 in the presence of immutable time but the same test yielded p≥0.05 in the absence of 

immutable time. Replicates were classified as false-negative in the reverse situation. 

 

Figure 5.2. Sample immutable time distributions used for the simulation study 

A) Setting 1  
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B) Setting 2  

 

C) Setting 3  

 

Notes: The figures are generated from a random data generation with a sample size of 500 
(n=250 per treatment arm). A kernel plot is used to overlay the distribution. Data is generated 
using a Gamma distribution with the following settings: 

A) shape=2 scale=0.205. Approximate median of 8 hours.  
B) shape=3 scale=0.25. Approximate median of 16 hours.  
C) shape=5.24 scale=0.235. Approximate median of 28 hours.  

  



www.manaraa.com

59 

 

Results 

Literature review 

 Trial investigators explicitly mentioned the use of a time-to-discharge readiness definition 

of LOS in 5 of 150 ICU-based RCTs (3%) in which LOS was a primary or secondary outcome 

(Table 5.1). Two trials used a ready-to-go time that was defined by clinical criteria, and two did 

not specify their criterion. In the fifth trial, the SUNSET trial, ready-to-go time was an 

administrative time-point indicated in the electronic medical record at the time the order for 

transfer from the ICU (indicating clinical readiness for discharge) was placed.  

Table 5.1. Documented use of time-to-discharge readiness to compare ICU LOS between study 
arms  

Author Definition Outcome 

Casaer et al. 
(Casaer et al., 
2011) 

The duration of time in the ICU was defined as the time from 
admission of patients until they were ready for discharge. 
Patients were considered ready for discharge as soon as all 
clinical conditions for ICU discharge were fulfilled (i.e., no 
more need for vital-organ support and receipt of at least two 
thirds of caloric requirements as oral feedings) even if they 
were not actually discharged that day. The ‘ready for 
discharge’ day coincided with the actual day of discharge for 
all patients except for 104/2328 (4.5%) patients in the late-
initiation group and 95/2312 (4.1%) patients in the early-
initiation group. 

Primary  

Jakob et al. 
(Jakob et al., 
2012)* 

Length of study ICU stay was defined as time from 
randomization to being medically fit for discharge or transfer 
from the study ICU.  

Secondary in both 
trials. 

Tritapepe et al. 
(Tritapepe et al., 
2009) 

ICU length of stay (time meeting fit-for-discharge criteria). 
Patients were eligible for transfer out of the ICU when the 
following criteria were met: SpO2 >90% at an FIO2 <0.5 by 
facemask, adequate cardiac stability with no 
hemodynamically significant arrhythmia, chest tube 
drainage <50 ml h-1, urine output >0.5 ml kg-1 h-1, no i.v. 
inotropic or vasopressor therapy, and no seizure activity.  

Primary 

Kerlin et al. 
(Kerlin et al., 
2013) 

Length of stay as the time to request for a bed to a general 
ward.  

ICU LOS (time-to-
discharge) was 
primary, ready-to-
go was a 
secondary 
definition.  

*Two trials are reported in this publication 
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Secondary data analysis 

 Among the 1,149 MICU discharges to another hospital unit or ward among SUNSET trial 

participants during their index ICU admission, we observed a median ready-to-go time of 40.1 

hours compared to 46.8 hours of time from admission to actual discharge (Figure 5.3). The 

median difference between ready-to-go time and actual discharge (i.e., immutable time) was 5.1 

hours (IQR 2.7 to 8.9 hours). The 90th, 95th and 99th percentile differences were 14.2, 21.7 and 

50.2 hours, respectively.  

 From administrative data of all MICU patients at our center in calendar years 2010-12, we 

identified 3,851 discharges from the MICU. The overall median immutable time was 7.0 hours 

(IQR 4.3 to 11.1, 90th percentile=21.6, 95th percentile=29.5), and this displayed considerable 

weekly, monthly, and yearly variation (Figures 5.4 & 4.5). More than half of all discharge requests 

were placed between 8 and 9 am, during which time the MICU’s morning bed management 

rounds occur (Figure 5.6).  

Figure 5.3. ICU length of stay ending at time of bed request and actual discharge among patients 
discharged in the SUNSET RCT 
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Figure 5.4. Weekly variation of immutable time in the Medical Intensive Care Unit of the Hospital 
of the University of Pennsylvania, 2010-2012  

Notes: Weekly (n=156 consecutive weeks starting in January 2010 on the far left through to 
December 2012 on the far right) distributions (boxplots) are calculated using administrative data 
from electronic medical records. The figure summarizes 3,851 medical intensive care unit (MICU) 
discharges, some of which are readmissions (i.e., one patient may contribute >1 discharges). 
Black lines in the middle of the box indicate the weekly median value. The bottom and top of the 
box represent the weekly interquartile range (IQR) (i.e., first and third quartile), respectively, and 
the top and bottom of the whiskers extending from the box represent the largest or lowest value 
not greater or lower than the IQR times 1.5 for each week. Dots above a weekly distribution 
indicate a time longer than 1.5 times the IQR for that week. Gray shading indicates weeks during 
peak flu activity in December, January, February and March according to the Centers for Disease 
Control.  
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Figure 5.5. Variation of immutable time by month of the year in the Medical Intensive Care Unit of 
the Hospital of the University of Pennsylvania, 2010-2012 

 

Notes: Monthly (n=36 consecutive months starting in January 2010 on the far left through to 
December 2012 on the far right) distributions (boxplots) are calculated using administrative data 
from electronic medical records. The figure summarizes 3,851 medical intensive care unit (MICU) 
discharges, some of which are readmissions (i.e., one patient may contribute >1 discharges). 
Black lines in the middle of the box indicate the monthly median value. The bottom and top of the 
box represent the monthly interquartile range (IQR) (i.e., first and third quartile), respectively, and 
the top and bottom of the whiskers extending from the box represent the largest or lowest value 
not greater or lower than the IQR x 1.5 for each month. Dots above a monthly distribution indicate 
a time longer than 1.5 times the IQR for that month. Gray shading indicates weeks during peak flu 
activity in December, January, February and March according to the Centers for Disease Control.   
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Figure 5.6. Cumulative radar frequency graph of the time of day that a request for discharge was 
submitted and occurred (24-hour day) 

 

 

Notes: The figure summarizes the time (using a 24-hour day where 0 is midnight and 23 is 11 
pm) a discharge order was placed for 3,851 discharges in the calendar years of 2010 to 2012 
(n=156 weeks). The numbers inside the intermediate circles indicate 5%, 15%, and 54% of the 
total, with the latter representing 2,076 discharges requested between 8-9 am, when morning bed 
management rounds occur. The second spike of the hour-of-bed-request curve, at roughly 5pm, 
coincides with the typical timing of evening bed management rounds. 
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Simulation study 

When data were simulated with no treatment effect, with a few exceptions in the largest 

immutable time setting (i.e., setting 3), less than 2-3% of replicates had an inferential mismatch 

due to immutable time (Figure 5.7). In the presence of a treatment effect, the rate of inferential 

mismatches varied considerably depending on the statistical model. Generally, inferential 

differences between the unbiased and immutable time LOS tended to decrease as (i) sample size 

increased, (ii) mortality rates decreased, and/or (iii) the magnitude of the treatment effect 

increased relative to the median immutable time (Figures 5.7-5.13). For example, in settings that 

simulated a half-day median reduction in LOS with a 20% mortality rate, false inference rates as 

high as 5% in setting 1 and 15% in setting 3 were observed. In the settings with a full day LOS 

treatment effect at the median, false inferences tended to be isolated to the smaller sample sizes 

of 200 to 600. Inferential differences between the two data generation approaches became 

apparent as mortality increased. The rank-sum test and linear regression models tended to report 

mostly false-negatives and have higher overall false inferential rates under the competing risks 

framework. The ICU free-day metric, which valued LOS as 0 for decedents, seemed to reduce 

inferential errors as the mortality rate increased under the competing risks framework, but less so 

under the principal stratification framework. The Cox time-to-event model exhibited higher, and 

mostly false-positive, rates as overall mortality increased from 10% to 40% under principal 

stratification data generation. These rates were much lower and isolated to small sample sizes in 

the competing risks framework. In many cases, the false positive and false negative 

interpretations result from small changes in the observed p-values relative to those that would 

have been obtained in the absence of immutable time.  
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Figure 5.7. Simulation results with no LOS reduction 

A) 10% overall mortality rate 

 

B) 20% overall mortality rate 
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C) 40% overall mortality rate 

  

Notes: S1, S2, and S3 indicate immutable time settings 1, 2, and 3, respectively, and correspond 
with a median of approximately 8, 16, and 28 hours of extra immutable time (Figure 5.2). A false 
positive is operationally defined for this study as a two-sided statistical test on the difference 
between study arms with immutable time added finding a p-value <0.05 when the error-free LOS 
distribution had a p-value ≥0.05. A false negative is operationally defined for this study as a two-
sided statistical test on the difference between study arms with immutable time added finding a p-
value ≥0.05 when the error-free LOS distribution had a p-value <0.05.  
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Figure 5.8. Simulation results with 10% baseline mortality, 0.5 day LOS reduction at the median 

A) Principal stratification data generation model 

 

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.  
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Figure 5.9. Simulation results with 10% baseline mortality, 1 day LOS reduction at the median 

A) Principal stratification data generation model 

 

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.  
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Figure 5.10. Simulation results with 20% baseline mortality, 0.5 day LOS reduction at the median 

A) Principal stratification data generation model 

 

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.  
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Figure 5.11. Simulation results with 20% baseline mortality, 1 day LOS reduction at the median 

A) Principal stratification data generation model 

 

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.   



www.manaraa.com

71 

 

Figure 5.12. Simulation results with 40% baseline mortality, 0.5 day LOS reduction at the median 

A) Principal stratification data generation model 

 

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.  
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Figure 5.13. Simulation results with 40% baseline mortality, 1 day LOS reduction at the median 

A) Principal stratification data generation model 

  

B) Competing risk data generation model 

 

Notes: See footnote for Figure 5.7. Reported LOS reduction is at the median.  
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Discussion 

 The increasing uptake of duration-based endpoints including ICU LOS in health services 

research requires scrutiny of the various definitions, analytic approaches, and inherent biases of 

these metrics. The present study provides several important findings regarding the awareness, 

patterns, and measurement errors associated with ICU LOS. First, fewer than 5% of published 

ICU-based RCTs in the modern era have reported using either a medical or administrative ready-

to-go definition of ICU LOS. Further, there is often a lack of specificity in the reporting of how ICU 

LOS was measured or analyzed. Without details regarding how authors define LOS endpoints, 

comparisons of results across trials and meta-analyses are intrinsically limited.  

Second, we re-analyzed data from the SUNSET trial and found that participants 

experienced a median of 5.1 additional hours (IQR 2.7 to 8.9 hours) of ICU time after their clinical 

improvement was confirmed with a discharge order. This discharge immutable time varied widely 

in a subsequent examination of our center’s administrative data over a three-year period where 

we found a slightly longer median immutable time of 7.0 hours (IQR 4.3 to 11.1 hours).  

 Third, we found that even when simplifying the mechanics of ICU LOS in a simulation 

setting, the addition of immutable time to hypothetical error-free LOS distributions can 

unpredictably erode statistical inference regardless of the statistical model. In reality ICU LOS is 

not a homogenous distribution, but rather one comprised of time to death and time to discharge 

sub-distributions, with heterogeneous patient subgroups (and thus LOS) in both. An intervention 

can impose complex changes to these various sub-distributions upon which immutable time adds 

an additional layer of inferential complexity. In our controlled simulation settings, the principal 

findings are that immutable time could lead to a wrong conclusion about the effect of an 

intervention on time-to-discharge readiness. While this predominantly results in the dilution or 

masking of a statistically significant decline in the simulated time-to-discharge readiness when the 

total LOS was assessed, particularly with small sample sizes, immutable time could also result in 

instances where the total LOS exhibited statistically significant differences not occurring in time-



www.manaraa.com

74 

 

to-discharge readiness. However, this was predominantly in the principal stratification framework 

and the time-to-event model and likely attributable to how this model estimates the latent LOS of 

censored individuals. Nevertheless, this suggests that non-differential measurement error may be 

less predictable when both the underlying error-free and measurement error distributions are not 

normally distributed as their combination can result in quantities that are dissimilar in terms of 

mean, median, and variance. The resulting small changes in the p-values between the two 

models can become magnified when statistical significance thresholds (i.e., 0.05) are imposed. 

This has important implications for how interventions are evaluated in trials versus real-world 

settings. First, it suggests that more than one modeling approach can better inform LOS 

comparisons. Second, declines in time-to-discharge readiness may be important to determine the 

efficacy of a treatment but different stakeholders may interpret small declines in this time that 

don’t result in declines in total ICU LOS differently.  

 In interpreting this work, the implications of several modeling assumptions must be 

considered. First, though useful for illustration, an important limitation of our simulation study is 

the assumption that immutable time would be non-differentially added across arms. This 

assumption may not be true in practice. For instance, in our analysis of three years of 

administrative data from one MICU, we found that the duration of discharge immutable time 

varied by week and year (Figures 5.4 and 5.5), suggesting immutable time may be differentially 

added to patients treated in the same ICU over time. While this variation would likely become 

evenly distributed between intervention arms over a sufficiently long recruitment period, 

particularly if randomization was done within center, these variations could conceivably lead to 

differential effects of immutable time across arms in some trials. Such differential effects could 

further distort treatment effect estimates (Fuller, 2006; Hyslop & Imbens, 2001), unless center 

and seasonal effects are assessed and accounted for analytically (Kahan & Harhay, 2015).  

A second assumption that may not hold in clinical practice is that the effects of immutable 

time would accrue consistently across patient subgroups. In fact, special patient populations may 
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experience levels of immutable time that exceed the average for a given ICU (e.g., patients 

requiring contact precautions, telemetry, or higher-level nursing observation may take longer to 

discharge to appropriate ward beds). Thus, trials that accrue relatively larger proportions of such 

patients may experience larger effects of immutable time on precision. 

Third, setting 2 is potentially the most informative to consider how immutable time may 

manifest in reality and while the third simulation setting can be informative for understanding the 

impact of large immutable times, such times may not be observed in many real-world settings. In 

trials there will be a point at which patients are randomized and enrolled (which may not always 

be equivalent and may or may not be at the time of admission). Thus, while discharge immutable 

time will almost always exist to some extent, the existence and size of early immutable time will 

vary with different study designs and interventions or it may be directly related to inclusion criteria 

(e.g., patients ventilated >48hours). Thus, there are two potential definitions of early immutable 

time: (1) time in the ICU from admission, or (2) after meeting exclusion criteria but prior to 

exposure to an intervention that should be considered when designing and analyzing a study. 

Finally, the ready-to-go time at our center was commonly observed during predictable 

times of day, immediately following morning and evening bed management rounds (Figure 5.6). 

Although many ICUs employ similar strategies for reviewing admission and discharge priorities at 

discrete times of the day, these patterns could limit the applicability of our simulation data to other 

units. Specifically, although all patients declared “ready to go” at these bed management rounds 

were truly eligible for discharge, having been granted that status by their physicians, some of 

these patients were likely ready to go hours beforehand. Trials conducted in ICUs that more 

frequently assess patients for discharge readiness may experience either longer or shorter 

immutable time distributions (with heightened or reduced implications for statistical precision, 

respectively). Such ICUs could experience longer measured immutable time if ward discharge 

times are relatively constrained, in which case the longer gaps between the more accurately 

measured ready-to-go times and actual discharge times would exacerbate immutable time. By 
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contrast, if more frequent assessment enabled more efficient discharge practices, this would limit 

the generation of immutable time.  

There are some additional limitations to our analysis. First, other settings not 

incorporated into the simulation study, such as longer LOS or impacts of an intervention on time-

to-death sub-distribution of ICU LOS, may also impact LOS interpretation. Variations in the 

precision and detail of reporting by authors as well as differential standards between journals may 

have caused a small underestimation of measuring time-to-discharge readiness in practice in the 

systematic review. For instance, we found published trial reports that used a standardized 

criterion for ICU discharge, but appeared to measure ICU LOS through till discharge. Utilization of 

standardized discharge criteria suggests awareness of immutable time bias, but it does not fully 

remove it. More broadly, lack of clarity and insufficient adherence to the CONSORT transparent 

reporting of trials statement standards of outcome definitions such that they are able to be 

replicated is an important finding of this work, but also a limitation, highlighting the importance for 

improved standardization and reporting of ICU LOS and other common outcomes.    

 In summary, LOS is an attractive endpoint for use in a wide range of healthcare 

outcomes research because it is important to patients, families, and health systems and readily 

quantifiable. Indeed, it is the most widely used secondary endpoint in ICU-based RCTs (Harhay 

et al., 2014). While our study focused on LOS measurement error in the ICU, the immutable time 

we identified is unlikely to be limited to ICU settings. Therefore, our results have potentially broad 

significance and applicability for health services research. Thus, when utilizing duration endpoints 

such as LOS, failing to consider or report definitions of the outcomes that are most plausibly 

related to interventions may result in inconsistency across trials, reduced power, and potentially 

even bias. These problems may be especially important in ICU-based RCTs, given the difficulties 

of recruiting adequate sample sizes to identify realistic and clinically meaningful treatment effects 

(Aberegg et al., 2010; Harhay et al., 2014; Rubenfeld, 2015). 
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CHAPTER 6. CONCLUSIONS 
 

There are several overarching conclusions that can be derived from this thematically 

linked work examining endpoints in ICU-based RCTs. First, our extensive review of the literature 

demonstrates a lack of standardized definitions and methods for reporting and comparing both 

mortal (Chapter 2) and nonmortal (Chapters 4 and 5) endpoints in published, experiential critical 

care research. This finding has several practical consequences. Primarily, as a result of a lack of 

core and standardized outcomes, critical care researchers who are interested in examining the 

same endpoint may in fact be asking different empirical questions, especially in regard to 

endpoints measured in terms of duration. The result manifests in how trials are conducted and 

reported and thus translated into clinical practice. It also confounds the ability of researches 

attempting to confirm the external validity of RCT findings, understand differences in observed 

effects between RCTs, and conducting meta-analyses. A second key finding of this work is that 

trials of mortality infrequently show a mortality effect due to their sample size (Chapter 2), but the 

small mortality differences that are observed have the potential to impact how nonmortal 

endpoints are interpreted (Chapters 4 and 5). This highlights an important fact: non-significant 

results do not indicate null results. We have shown that in simplified simulated settings these 

issues can profoundly complicate the interpretation of trial results. In real-world settings when all 

these issues are simultaneously occurring, the inferential complexity is likely intensified and 

requires close examination of several factors to fully understand how an intervention has 

impacted patients (Tables 4.1 and 4.2) 

In the course of this work, we have identified several new questions that may serve as 

the foundation for future research. For instance, though trials may adjust for prognostic variables 

such as severity-of-illness to assess their outcomes, other sources of variation (i.e., treating 

physician, ICU and hospital factors) are often not accounted for in statistical analysis. This 

practice has consequences, particularly given the frequent recommendation that more patients 

and centers should be included in ICU-based RCTs to increase sample sizes and generalizability 

(Landoni et al., 2015). While the multicenter design increases the likelihood of attaining adequate 
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sample sizes, the diverse characteristics that vary across ICUs, such as intensivist practice 

patterns, protocols, or the acumen of trainees and staff can exert a powerful influence on patient 

outcomes. Thus, I contend that primary endpoints should be adjusted, at a minimum, for patient 

acuity and center effects in primary analyses. This is especially important when the contribution of 

enrolled subjects differs across centers, and failure to account for center effects can lead to 

complex and unpredictable type I or II errors when comparing trial arms (Kahan & Harhay, 2015; 

Kahan et al., 2014; Kahan & Morris, 2013). A key focus of my future research will be on how to 

correctly account for these potential drivers and confounders of patient outcomes. 

A second research direction relates to identification of better endpoints for trials. In 

Chapter 2, we describe that nonmortal endpoints have become common in ICU RCTs, but in 

Chapter 4 we illustrate the point that nonmortal endpoints are interlinked with and confounded by 

mortality. As a potential solution, the use of event-free-days as a composite outcome (whereby 

death equals zero free-days) is gaining traction (Blackwood et al., 2014; Harhay et al., 2014; 

National Heart et al., 2011; Rice et al., 2011) because this composite outcome offers more 

statistical power than mortality endpoints (Schoenfeld et al., 2002) and also overcomes certain 

biases associated with death-induced missing data (i.e., informative dropout), which can 

complicate the interpretation of duration-based endpoints (see Chapter 4). However, traditional 

analyses of free-day outcomes do not describe patient trajectories over time (Schoenfeld et al., 

2002) and disregard patient preferences, some of whom may choose death over different long-

term care requirements (Rubin et al., 2016). Finally, when interventions influence mortality, 

independent examination of the mortal and nonmortal endpoints is necessary, thereby limiting the 

conceptual, inferential and statistical benefits of free-day metrics as an outcome (Cannon, 1997; 

Freemantle et al., 2003; Schoenfeld et al., 2002; Tomlinson & Detsky, 2010).  

There are several potential approaches to meet the need for better trial endpoints. The 

first is to develop and validate a weighting within a composite outcome framework that accounts 

for patients’ preferences for death over different disease and treatment states. The second 

approach relates to the assessment of endpoints with more appropriate statistical methods. In 
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this regard I am especially interested and actively pursuing research to study nonmortal 

outcomes such as ICU free-days, fluid balance and sequential organ failure assessment (SOFA) 

scores in a joint longitudinal and time-to-event framework. Joint longitudinal and survival 

modeling methods uniquely permit the simultaneous assessment of the longitudinal nonmortal 

endpoint (e.g., free-days over time) and the mortal endpoint in a single statistical model (Ratcliffe 

et al., 2004). This approach represents a novel analytic method to incorporate data on informative 

dropout that generates unbiased treatment effects and provides greater insight regarding patient 

trajectories over time (Ratcliffe et al., 2004; Rizopoulos, 2012). Integrating a patient-centered 

outcome into this longitudinal framework has great promise, as longitudinal statistical methods 

wield much greater power, thereby potentially reducing needed sample sizes such that resources 

can be redirected to improve and expand outcome measurement and follow-up.  Research by my 

colleagues has already broached the methodological (Lin et al., 2014) and patient-centered 

elements (Rubin et al., 2016) of this important topic. Integrating patient-centered outcomes and 

longitudinal data structures is a necessary and logical next step to make advances in the 

development of meaningful and measurable patient-centered outcomes in critical care. 

 

Concluding remarks 

In conclusion, this dissertation consisted of three empirical analyses that focused on 

describing the current landscape of ICU-based RCTs and illustrating the consequences of bias 

and measurement error in the interpretation of trial results. Chapter 2 established the foundation 

upon which Chapters 4 and 5 were built. Accordingly, the conclusions and recommendations of 

Chapter 2 are even more relevant when the work is considered together. Dialogue and 

agreement throughout the critical care community (including journal editors) that goes beyond 

another “call-to-action” is needed. Indeed, a subspecialty-specific CONSORT guideline statement 

may be warranted given the unique challenges identified and number of non-significant trials that 

have been published. The International Forum for Acute Care Trialists (InFACT) is actively 

pursuing similar endeavors on a smaller scale. Their work, for instance, is currently focusing on 
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the identification and publication of a minimum core set of outcomes for ventilation and other 

modality-specific interventions (Blackwood et al., 2014; Blackwood et al., 2015). Such a forum 

would be most appropriate for developing a critical care CONSORT document. This dissertation 

also highlights the need for methodological work to improve strategies for defining and measuring 

nonmortal outcomes, in such a manner that trial results can be compared across numerous 

centers and patient populations. To this end, the results from this dissertation and our 

recommendations will hopefully have a positive, albeit incremental, impact on the future of trials in 

critical care patients.  
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